noi.openjudge 1.12.6
http://noi.openjudge.cn/ch0112/06/
- 总时间限制:
- 2000ms
- 内存限制:
- 65536kB
- 描述
-
传说很遥远的藏宝楼顶层藏着诱人的宝藏。小明历尽千辛万苦终于找到传说中的这个藏 宝楼,藏宝楼的门口竖着一个木板,上面写有几个大字:寻宝说明书。说明书的内容如下:
藏宝楼共有 N+1 层,最上面一层是顶层,顶层有一个房间里面藏着宝藏。除了顶层外,藏宝楼另有 N 层,每层 M 个房间,这 M 个房间围成一圈并按逆时针方向依次编号为 0,…, M-1。其中一些房间有通往上一层的楼梯,每层楼的楼梯设计可能不同。每个房间里有一个指示牌,指示牌上有一个数字 x,表示从这个房间开始按逆时针方向选择第 x 个有楼梯的房间(假定该房间的编号为 k),从该房间上楼,上楼后到达上一层的 k 号房间。比如当前房间的指示牌上写着 2,则按逆时针方向开始尝试,找到第 2 个有楼梯的房间,从该房间上楼。如果当前房间本身就有楼梯通向上层,该房间作为第一个有楼梯的房间。
寻宝说明书的最后用红色大号字体写着:“寻宝须知:帮助你找到每层上楼房间的指示牌上的数字(即每层第一个进入的房间内指示牌上的数字)总和为打开宝箱的密钥”。
请帮助小明算出这个打开宝箱的密钥。
- 输入
- 第一行 2 个整数 N 和 M,之间用一个空格隔开。N 表示除了顶层外藏宝楼共 N 层楼, M 表示除顶层外每层楼有 M 个房间。
接下来 N*M 行,每行两个整数,之间用一个空格隔开,每行描述一个房间内的情况,其中第(i-1)*M+j 行表示第 i 层 j-1 号房间的情况(i=1, 2, …, N;j=1, 2, … ,M)。第一个整数表示该房间是否有楼梯通往上一层(0 表示没有,1 表示有),第二个整数表示指示牌上的数字。注意,从 j 号房间的楼梯爬到上一层到达的房间一定也是 j 号房间。
最后一行,一个整数,表示小明从藏宝楼底层的几号房间进入开始寻宝(注:房间编号从 0 开始)。
对于50%数据,有 0< N ≤ 1000,0 < x ≤ 10000;
对于100%数据,有 0 < N ≤ 10000,0 < M ≤ 100,0 < x ≤ 1,000,000。 - 输出
- 输出只有一行,一个整数,表示打开宝箱的密钥,这个数可能会很大,请输出对 20123 取模的结果即可。
- 样例输入
-
2 3
1 2
0 3
1 4
0 1
1 5
1 2
1 - 样例输出
-
5
- 提示
- 输入输出样例说明:
第一层:
0 号房间,有楼梯通往上层,指示牌上的数字是 2;
1 号房间,无楼梯通往上层,指示牌上的数字是 3;
2 号房间,有楼梯通往上层,指示牌上的数字是 4;
第二层:
0 号房间,无楼梯通往上层,指示牌上的数字是 1;
1 号房间,有楼梯通往上层,指示牌上的数字是 5;
2 号房间,有楼梯通往上层,指示牌上的数字是 2;
小明首先进入第一层(底层)的 1 号房间,记下指示牌上的数字为 3,然后从这个房间 开始,沿逆时针方向选择第 3 个有楼梯的房间 2 号房间进入,上楼后到达第二层的 2 号房间, 记下指示牌上的数字为 2,由于当前房间本身有楼梯通向上层,该房间作为第一个有楼梯的房间。因此,此时沿逆时针方向选择第 2 个有楼梯的房间即为 1 号房间,进入后上楼梯到达 顶层。这时把上述记下的指示牌上的数字加起来,即 3+2=5,所以打开宝箱的密钥就是 5。 - 来源
- NOIP2012复赛 普及组 第二题
对于这个题,我错了16次。。。。。。
。
本人乃为国服第一弱鸡,号称“造粪大师”。
话说写这个题时,老是0分。。。还有1分。。。
接下来,就是注意点
出现这个问题,那是因为门牌号的数字太大,导致模拟的时候,实际上已经跑了好几圈,导致耗时太长。要解决的话,其实只要把每一层出现的有楼梯的房子的数目记录下来,然后用门牌数对这个数目取模即可。
取模的时候要注意,取模的结果是有可能为0的,这个时候就要做相应的处理了,我的方法是让它再走一圈,即将取模后的数字加上改行存在楼梯的房间数目。我的1分就来源于没有处理好这一点,可以看出来这个数据还是比较坑爹的。
接下来,就是AC代码,c语言
注释的部分是中途测程序用的
#include<stdio.h>
int a[10086][108],flag[10086][108];
int s[10086];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++){
for(int k=0;k<m;k++){
scanf("%d%d",&flag[i][k],&a[i][k]);
s[i]+=flag[i][k];
}
}
int in,num=0,sum=0,t;
scanf("%d",&in);
for(int i=0;i<n;i++){
sum=(sum%20123+a[i][in]%20123)%20123;
//printf("sum=%d\n",sum);
t=a[i][in];num=0;
t=t%s[i];
if(t==0){t=s[i];}
for(int k=in;;k=(k+1)%m){
//printf("k=%d\n",k);
if(flag[i][k]==1){num++;}
if(num>=t){in=k;break;}
}
}
printf("%d",sum);
}
noi.openjudge 1.12.6的更多相关文章
- noi.openjudge 1.13.44
http://noi.openjudge.cn/ch0113/44/ 总时间限制: 1000ms 内存限制: 65536kB 描述 将 p 进制 n 转换为 q 进制.p 和 q 的取值范围为[2 ...
- noi.openjudge 1.13.15
http://noi.openjudge.cn/ch0113/15/ 总时间限制: 1000ms 内存限制: 65536kB 描述 输入一个长度为N的整数序列 (不多于128个整数),每个整数的范 ...
- noi.openjudge 2.6.162 Post Office
http://noi.openjudge.cn/ch0206/162/ 总时间限制: 1000ms 内存限制: 65536kB 描述 There is a straight highway wit ...
- noi.openjudge——8465 马走日
http://noi.openjudge.cn/ch0205/8465/ 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 1024kB 描述 马在中国象棋以日字形规则移动. 请编写 ...
- noi.openjudge——2971 抓住那头牛
http://noi.openjudge.cn/ch0205/2971/ 总时间限制: 2000ms 内存限制: 65536kB 描述 农夫知道一头牛的位置,想要抓住它.农夫和牛都位于数轴上,农夫 ...
- noi openjudge 1768:最大子矩阵
链接:http://noi.openjudge.cn/ch0406/1768/ 描述已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如 ...
- noi openjudge 6044:鸣人和佐助
http://noi.openjudge.cn/ch0205/6044/ 描述佐助被大蛇丸诱骗走了,鸣人在多少时间内能追上他呢? 已知一张地图(以二维矩阵的形式表示)以及佐助和鸣人的位置.地图上的每个 ...
- noi题库(noi.openjudge.cn) 1.7编程基础之字符串T31——T35
T31 字符串P型编码 描述 给定一个完全由数字字符('0','1','2',-,'9')构成的字符串str,请写出str的p型编码串.例如:字符串122344111可被描述为"1个1.2个 ...
- noi题库(noi.openjudge.cn) 1.5编程基础之循环控制T36——T45
T36 计算多项式的值 描述 假定多项式的形式为xn+xn-1+-+x2+x+1,请计算给定单精度浮点数x和正整数n值的情况下这个多项式的值. 输入 输入仅一行,包括x和n,用单个空格隔开.x在flo ...
随机推荐
- 错误模块名称: KERNELBASE.dll错误
今天在部署一个C/S程序的时候出了bug,日志都没有记载:本地调试当然是没问题的,所以不是代码问题,百度之发现KERNELBASE.dll这个文章说的比较靠谱,仔细研究了自己的配置文件后,果然是配置文 ...
- PHP namespace、require、use区别
假设 有文件a.php 代码 <?php class a{//类a public function afun()//函数afun { echo "aaaa"; } } ?&g ...
- controller层负责创建类传递类给service;service层负责逻辑编写调用dao层 将编写后的类传递到dao层,保证事务的正确性;dao层负责数据的持久化
controller层负责创建类传递类给service:service层负责逻辑编写调用dao层 将编写后的类传递到dao层,保证事务的正确性:dao层负责数据的持久化
- Wiener Filter
假设分别有两个WSS process:$x[n]$,$y[n]$,这两个process之间存在某种关系,并且我们也了解这种关系.现在我们手头上有process $x[n]$,目的是要设计一个LTI系统 ...
- HUST 1541 解方程
参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6394836.html 1541 - Student’s question 时间限制:1秒 内存限制 ...
- Paths on a Grid POJ - 1942 组合数学 (组合数的快速计算)
题意:格路问题 没什么难度 难点在于如何快速计算相对较大的组合数 思路:运用手写计算组合数的方式进行计算 如c(8,3) 如果手算就是 8*7*6/(3*2*1)这样可以很快得解出 计算代码为: ...
- BZOJ2554 color 【概率DP】【期望DP】
题目分析: 好题. 一开始看错题了,以为是随机选两个球,编号在前的染编号在后的. 但这样仍然能获得一些启发,不难想到可以确定一个颜色,剩下的颜色是什么就无关了. 那么答案就是每种颜色的概率乘以期望.概 ...
- POJ 1966 Cable TV Network (算竞进阶习题)
拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...
- Matplotlib学习---用matplotlib画柱形图,堆积柱形图,横向柱形图(bar chart)
这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/hot-dog-cont ...
- 【XSY2779】最小表示串 KMP DP polya定理
题目描述 给你一个字符串\(s\),问你有多少个串是最小表示串且字典序\(\leq s\) \(|s|\leq 1000\) 题解 先把\(s\)变成比\(s\)小的最大的最小表示串.方法是从后枚举每 ...