**************input**************

[[[[-0.36166722  0.04847232  1.20818889 -0.1794038  -0.53244466]

[-0.67821187 -1.81838071  0.59005165 -1.17246294  0.33203208]

[-0.18631086 -0.68608224  0.07464688  0.28875718 -0.86492658]]

[[ 1.63322294  0.99059737  0.5923292  -0.80913633 -2.2539773 ]

[ 0.14436921 -0.45454684 -0.61321616 -1.01231539  1.54901564]

[ 0.38690856  1.84936357  0.55067211  0.3163861  -0.62082398]]

[[ 0.3655189   1.96013069  0.91159737  1.89106071  2.04635859]

[-1.13240027 -1.64421642 -1.23379624 -0.18057458 -0.37131071]

[-0.55824232  0.5738467  -1.02291656  0.8829596  -2.15986562]]]]

(1, 3, 3, 5)

*****************filter*************

[[[[ 0.43657559  1.01129627]

[ 0.30303505  1.57386982]

[ 0.63144618 -0.38221657]

[ 1.03055692  0.27556673]

[ 0.14717487 -0.47002205]]]]

(1, 1, 5, 2)

***************result************

[[[[ 0.35645172 -0.55043042]

[-1.63396096 -4.25244951]

[-0.07182495 -0.81064451]]

[[ 0.22164512  3.82079363]

[-1.27720094 -1.34204817]

[ 1.31174088  3.47044706]]

[[ 3.57920766  2.66549063]

[-2.0124495  -3.1366334 ]

[-0.12367389  1.98808599]]]]

(1, 3, 3, 2)

import tensorflow as tf
input = tf.Variable(tf.random_normal([1,3,3,5]));
filter = tf.Variable(tf.random_normal([1,1,5,2]));
op = tf.nn.conv2d(input,filter,strides=[1,1,1,1],padding='VALID');
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables());
    result=sess.run(op);
    print('**************input**************');
    print(sess.run(input));
    print(input.shape);
    print('*****************filter*************');
    print(sess.run(filter));
    print(filter.shape);
    print('***************result************');
    print(result);
    print(result.shape);

关于tensorflow conv2d卷积备忘的一点理解的更多相关文章

  1. TensorFlow anaconda命令备忘

    [查看tensorflow安装的版本] anaconda search -t conda tensorflow [选择版本安装] conda install -c anaconda tensorflo ...

  2. TCP的拥塞窗口和快速恢复机制的一些备忘及一点想法

    rwnd(窗口,代表接收端的处理能力).cwnd(拥塞窗口,从发送端看当前网络整体承载能力).ssthresh(快速增长切换成慢速增长的界限值) 1.慢启动,是指数增长(对面确认多少个包,就增加多少) ...

  3. CNN中的卷积核及TensorFlow中卷积的各种实现

    声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...

  4. TensorFlow中卷积

    CNN中的卷积核及TensorFlow中卷积的各种实现 声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了“ ...

  5. Cheat (tldr, bropages) - Unix命令用法备忘单

    cheat 是一个Unix命令行小工具,用来查询一些常用命令的惯用法(我们都知道,man page阅读起来太累了,常常是跳到最后去看 examples,但并不是所有man pages里面都有examp ...

  6. 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结

    折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...

  7. AngularJS之备忘与诀窍

    译自:<angularjs> 备忘与诀窍 目前为止,之前的章节已经覆盖了Angular所有功能结构中的大多数,包括指令,服务,控制器,资源以及其它内容.但是我们知道有时候仅仅阅读是不够的. ...

  8. mxnet与tensorflow的卷积实现细节比较

    mxnet的卷积 kernel = 3  pad=1边界补充0后,不管stride是否1还是2,imgw = 奇数或者偶数, 都是从图像位置(0,0)开始卷积 tensorlfow的卷积 kernel ...

  9. Annotation 使用备忘

    title: Annotation 使用备忘 date: 2016-11-16 23:16:43 tags: [Annotation] categories: [Programming,Java] - ...

随机推荐

  1. Eclipse导入的User Libarary

    在使用eclipse导入外部jar包时,经常使用Add User Libarary的方式,采用这种方式,外部的jar包没有直接添加到WEB-INF/libs下,那这些jar是在哪里引入的呢? 使用外部 ...

  2. day31并发

    以后你为之奋斗的两点: 提高cpu的利用率 提高用户的体验  1.纯概念/纯方法 操作系统的发展历程 #主要的人机矛盾是什么:CPU的使用率 #输入\输出数据和CPU计算没有关系 #操作系统是怎么进化 ...

  3. unity中的Culling Mask

    摄像机按层渲染 Camera.cullingMask = 1<<x;//渲染x层 Camera.cullingMask = ~(1<<x);//渲染除去x的所有层 Camera ...

  4. npm -S -D -g i 有什么区别

    npm i module_name -S = > npm install module_name --save 写入到 dependencies 对象  //开发环境能使用,生产环境也能使用or ...

  5. 15. Life Cycle of the Products 产品的生命周期

    15. Life Cycle of the Products 产品的生命周期 (1) We can see how the product life cycle works by looking at ...

  6. web应用与web框架

    一.web应用 对于所有的Web应用,本质上其实就是一个socket服务端,用户的浏览器其实就是一个socket客户端. import socket def handle_request(client ...

  7. 推导正交投影(Orthographic Projection)

    定义六个面 left right bottom top near far   然后三个轴分开考虑 x轴 视椎体的x范围在[l,r],我们要变换到[-1,1] 1 减去l变换到[0, r-l] 2 乘以 ...

  8. Jenkins pipeline 并行执行任务流

    笔者在<Jenkins 在声明式 pipeline 中并行执行任务>一文中介绍了如何在声明式 pipeline 中执行并行的任务.前一段时间,Jenkins 发布了 1.3 版的声明式 p ...

  9. 「ZJOI2016」解题报告

    「ZJOI2016」解题报告 我大浙的省选题真是超级神仙--这套已经算是比较可做的了. 「ZJOI2016」旅行者 神仙分治题. 对于一个矩形,每次我们从最长边切开,最短边不会超过 \(\sqrt{n ...

  10. 安全运维中基线检查的自动化之ansible工具巧用

    i春秋作家:yanzm 原文来自:安全运维中基线检查的自动化之ansible工具巧用 前几周斗哥分享了基线检查获取数据的脚本,但是在面对上百台的服务器,每台服务器上都跑一遍脚本那工作量可想而知,而且都 ...