大家好,我是人见人爱,花见花开的小花。哈哈~~!

在统计和数据挖掘中,亲和传播(AP)是基于数据点之间"消息传递"概念的聚类算法。与诸如k-means或k-medoids的聚类算法不同,亲和传播不需要在运行算法之前确定或估计聚类的数量。 类似于k-medoids,亲和力传播算法发现"样本",输入集合的成员,输出聚类结果。

一 算法描述

2.1基本介绍

我们让(x1,…xn)作为一系列的数据点,然后用矩阵S代表各个数据点之间的相似度,一般相似度的判断有欧氏距离,马氏距离,汉明距离。如果S(i,k)>S(i,j)则表示i到k的距离比i到j的距离近。其中S(k,k)表示节点k作为k的聚类中心的合适程度,可以理解为,节点k成为聚类中心合适度,在最开始时,这个值是初始化的时候使用者给定的值,会影响到最后聚类的数量。

这个算法通过迭代两个消息传递步骤来进行,以更新下面两个矩阵:

代表(Responsibility)矩阵R:r(i,k)表示第k个样本适合作为第i个样本的类代表点的代表程度。说白了K为男人,i为女人,代表矩阵R表示,这个男人成为i这个女人老公的适合程度。

适选(Availabilities)矩阵A=[a(i,k)]N×N:a(i,k)表示第i个样本选择第k个样本作为类代表样本的适合程度,同理表示i选择K作为自己老公的可能性。当然,这个社会是相对于封建社会有点进步的,比如也会征求女方的意见,但是又有一定弊端,这个男人K可以三妻四妾。所以K这个聚类中心,周围可以有许多样本i。所以有的人叫R矩阵为吸引度矩阵,矩阵A为归属度矩阵也是不无道理的。

2.2 算法的迭代公式

对于代表矩阵r:

假设现在有一个聚类中心K,我们找到另外一个假想的聚类中心k',重新定义K'的代表矩阵和适合矩阵:,找出这两个值相加最大的那一个,在用我们的减去这个最大的,就表示这个K的聚类中心对i这个样本的吸引程度。你想想,最大情敌的吸引力都没有我高,那我岂不是最牛叉???

对于适合矩阵a:

我们要明白一个道理,如果一个男人对大部分女人的吸引力都很大,那么这个男人对你这个女人的吸引力的可能性是不是比别人大一点?明白了这个道理。同理如果节点k作为其他节点i'的聚类中心的合适度很大,那么节点k作为节点i的聚类中心的合适度也可能会较大,由此就可以先计算节点k对其他节点的吸引度,r(i',k),然后做一个累加和表示节点k对其他节点的吸引度,得到:。等等r(k,k)是什么意思呢,一般帅的人是不是都是特别容易自恋?你懂得,所以这个表示样本选择自己作为聚类中心的自恋程度。为了不让这个值过大,影响整体结果,将这个值控制在0以下。当i=k的时候我们选就可以了。a(k,k)表示K这个作为聚类中心的能力。

注意有时候为了防止参数更新时的震动需要引入一个减震参数damping。Damping计算如下:

二 算法实现

function idx = AP(S)

N = size(s,1);

A=zeros(N,N);

R=zeros(N,N); % Initialize messages

lam=0.9; % Set damping factor

same_time = -1;

for iter=1:10000

% Compute responsibilities

Rold=R;

AS=A+S;

[Y,I]=max(AS,[],2);

for i=1:N

AS(i,I(i))=-1000;

end

[Y2,I2]=max(AS,[],2);

R=S-repmat(Y,[1,N]);

for i=1:N

R(i,I(i))=S(i,I(i))-Y2(i);

end

R=(1-lam)*R+lam*Rold; % Dampen responsibilities

% Compute availabilities

Aold=A;

Rp=max(R,0);

for k=1:N

Rp(k,k)=R(k,k);

end

A=repmat(sum(Rp,1),[N,1])-Rp;

dA=diag(A);

A=min(A,0);

for k=1:N

A(k,k)=dA(k);

end;

A=(1-lam)*A+lam*Aold; % Dampen availabilities

if(same_time == -1)

E=R+A;

[tt idx_old] = max(E,[],2);

same_time = 0;

else

E=R+A;

[tt idx] = max(E,[],2);

if(sum(abs(idx_old-idx)) == 0)

same_time = same_time + 1;

if(same_time == 10)

iter

break;

end

end

idx_old = idx;

end

end

E=R+A;

[tt idx] = max(E,[],2);

% figure;

% for i=unique(idx)'

% ii=find(idx==i);

% h=plot(x(ii),y(ii),'o');

% hold on;

% col=rand(1,3);

% set(h,'Color',col,'MarkerFaceColor',col);

% xi1=x(i)*ones(size(ii)); xi2=y(i)*ones(size(ii));

% line([x(ii)',xi1]',[y(ii)',xi2]','Color',col);

% end;

总结:算法讲解部分到这里结束了。谢谢大家,能否走一波关注?哈哈

机器学习笔记-----AP(affinity propagat)算法讲解及matlab实现的更多相关文章

  1. Python机器学习笔记:异常点检测算法——LOF(Local Outiler Factor)

    完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需 ...

  2. 【机器学习笔记之四】Adaboost 算法

    本文结构: 什么是集成学习? 为什么集成的效果就会好于单个学习器? 如何生成个体学习器? 什么是 Boosting? Adaboost 算法? 什么是集成学习 集成学习就是将多个弱的学习器结合起来组成 ...

  3. Stanford机器学习笔记-9. 聚类(K-means算法)

    9. Clustering Content 9. Clustering 9.1 Supervised Learning and Unsupervised Learning 9.2 K-means al ...

  4. 吴恩达机器学习笔记58-协同过滤算法(Collaborative Filtering Algorithm)

    在之前的基于内容的推荐系统中,对于每一部电影,我们都掌握了可用的特征,使用这些特征训练出了每一个用户的参数.相反地,如果我们拥有用户的参数,我们可以学习得出电影的特征. 但是如果我们既没有用户的参数, ...

  5. 吴恩达机器学习笔记55-异常检测算法的特征选择(Choosing What Features to Use of Anomaly Detection)

    对于异常检测算法,使用特征是至关重要的,下面谈谈如何选择特征: 异常检测假设特征符合高斯分布,如果数据的分布不是高斯分布,异常检测算法也能够工作,但是最好还是将数据转换成高斯分布,例如使用对数函数:

  6. 机器学习笔记(五) K-近邻算法

    K-近邻算法 (一)定义:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别. (二)相似的样本,特征之间的值应该是相近的,使用k-近邻算法需要做标准化处理.否 ...

  7. [吴恩达机器学习笔记]14降维3-4PCA算法原理

    14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.3主成分分析原理Proncipal Component Analysis Problem Formulation 主成分分析( ...

  8. 机器学习笔记—混合高斯和 EM 算法

    本文介绍密度估计的 EM(Expectation-Maximization,期望最大). 假设有 {x(1),...,x(m)},因为是无监督学习算法,所以没有 y(i). 我们通过指定联合分布 p( ...

  9. [机器学习笔记]kNN进邻算法

    K-近邻算法 一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算 ...

随机推荐

  1. CSS选择器的权重与优先规则?

    我们做项目的时候,经常遇到样式层叠问题,被其他的样式覆盖,或者写的权重不高没效果,对权重没有具体的分析,做了一个总结. css继承是从一个元素向其后代元素传递属性值所采用的机制.确定应当向一个元素应用 ...

  2. 让ABAP开发者愈加轻松的若干快捷键

    引言 ABAP是一种和当代编程语言在许多方面有着相当不同的编程语言.ABAP的某些方面可能会让我们奇怪,为什么它会如此复杂?而它的某些方面又是那么杰出,给予了ABAP开发者们比其它任何语言更多的便利. ...

  3. Linux2.6内核进程调度系列--scheduler_tick()函数3.更新普通进程的时间片

    RT /** * 运行到此,说明进程是普通进程.现在开始更新普通进程的时间片. */ /* 首先递减普通进程的时间片计数器.如果用完,继续执行以下操作 */ if (!--p->time_sli ...

  4. 《简单的自定义DropDatePicker》-- UIPopoverController 和 代理 以及 Block 实现。

    最近做项目为了方便项目使用,自定义的空间 写的比较粗糙.欢迎大家批评指正.以上为在项目中的实际应用 // DropDownDatePicker.h // DropDownDatePickerDemo ...

  5. iOS比较常用的第三方及实例(不断更新中)

    把平时看到或项目用到的一些插件进行整理,文章后面分享一些不错的实例,若你有其它的插件欢迎分享,不断的进行更新: 一:第三方插件 1:基于响应式编程思想的oc 地址:https://github.com ...

  6. Express 4 handlebars 不使用layout写法

    Express 4 handlebars 不使用layout写法 Express node nodejs handlebars layout 最近刚开始学习使用nodejs. 使用express搭建了 ...

  7. Learning the standard of C++11

    It's a very useful website of en.cppreference.com. It lists a huge number of information about the l ...

  8. jq focus 在火狐(Firefox)下无效

    今天写代码的时候发现,在blur事件里面写focus获取焦点无效, $input.blur(function(){ ……………… $input.focus(): } 而且只是在火狐下面无效而已,很明显 ...

  9. vim 学习积累(一)

    首先是简单的认识了三种状态(大家公认的说法是模式),分别是:插入,视图,和一般. 进入vim之后默认的是一般模式,这时直接使用'a', 'i', 'o'(也就是进入vim之后直接按下a/i/o键均可进 ...

  10. svm心得体会(2)

    昨天和李老师讨论一会还是有所得的,虽然我发誓要早睡又泡汤了,又无原则晚睡了. 总结一下有这么几点心得认识: (1)MATLAB再带的svm工具箱得不到参数,必须在路径中添加libsvm工具箱,安装在M ...