陌上花开——CDQ分治
传送门
“CDQ分治”从来都没有听说过,写了这题才知道还有这么神奇的算法。
(被逼无奈)。w(゚Д゚)w
于是看了不少dalao的博客,对CDQ算法粗浅地了解了一点。(想要了解CDQ的概念,可以看下这位dalao的博客)
所以,这道题要怎么做呢。。。
根据,CDQ分治理论,这题按照题意建出来储存信息的数组很明显是个三维的。很巧的是,CDQ分治的好处之一就是降维(根据官方民间说法,每降一维要付出一个log的时间代价)。则本题的三维数组,根据CDQ就有:第一维用来直接排序,第二维做CDQ分治,第三维做树状数组。
为了能够更加透彻地理解此题思路,借鉴了洛谷dalao的题解。
【解题思路】
- 这题有很多解法碰巧我们是作为CDQ分治的例题,于是这里就只介绍CDQ分治的解法
- 一道三维偏序,所以先把所有属性进行多关键字排序,先按a排序,再按b排序,最后按c排序,这就保证了在数列里面,后面的a会比前面的a要大(相当于把a离散化)。
- 接着就进行CDQ分治,对于一个区间l到r来说,a是已经排好序的。在CDQ分治完l--mid和mid+1--r这两个区间后,把l到r进行多关键字排序,这次先按b排序,再按c排序,最后按a排序,这就再保证了b的要求。
- 然后像CDQ分治需要的那样,把小于等于mid的a的贡献统计起来,把1-c的区间全部加1,优化大于mid的值的答案。这是一个区间修改,单点查询的操作,可以用线段树或者树状数组解决,本人为了方便用了树状数组。
- 记得最后还原树状数组。注意,如果直接对整个数组进行memset有可能会超时,我们只需对直接的操作进行反操作,把小于等于mid的a中,1-c的区间全部加-1即可。
- 最后进行判重(为什么要判重呢?因为如果有几个相同的量,我们CDQ分治的时候并没有管它,直接计算就会把所有结果都计算出来。这是你如果不判重,那么就会把一个答案反复累加,最终答案就会变大)
——摘自洛谷题解
那么融合了各位dalao的CDQ精华,以及本蒟蒻对CDQ的理解(+注释)后,就有了AC的极简代码。
#include<algorithm>
#include<cstdio>
using namespace std;
#define maxn 100005
struct node{int x,y,z,num,ans;}a[maxn];
int n,m,tot,ans[maxn],sum[maxn<<];
inline bool cmp2(const node&a,const node&b)
{
if(a.y!=b.y) return a.y<b.y;
return a.z<b.z;
}
inline bool cmp1(const node&a,const node&b)
{
if(a.x!=b.x) return a.x<b.x;
return cmp2(a,b);
}
inline void Add(int x,int y)//极简的树状数组
{
for(;x<=m;x+=x&(-x)) sum[x]+=y;
}
inline int Quary(int x)//合并左右子区间的贡献
{
int ans=;
for(;x;x-=x&(-x)) ans+=sum[x];
return ans;
}
inline void CDQ(int l,int r)
{
if(l==r) return;
int mid=l+r>>;
CDQ(l,mid);CDQ(mid+,r);//先递归处理子问题
sort(a+l,a+mid+,cmp2);
sort(a+mid+,a+r+,cmp2);//把两个子问题的第一维分别进行排序。
for(int i=mid+,j=l;i<=r;i++)
{
while(j<=mid&&a[j].y<=a[i].y) //若第二维的左子区间的a[j].y对右子区间产生了贡献
Add(a[j].z,a[j].num),j++;//就把第三维的a[j].z扔进树状数组
a[i].ans+=Quary(a[i].z);//归并排序
}
for(int i=l,max=a[r].y;i<=mid&&a[i].y<=max;i++) Add(a[i].z,-a[i].num);//清空树状数组(作案不留痕迹)
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
sort(a+,a+n+,cmp1);//按第一维排序
for(int i=;i<=n;i++,a[tot].num++)
if(a[i].x!=a[tot].x||a[i].y!=a[tot].y||a[i].z!=a[tot].z)
a[++tot]=a[i];//把可以符合题意的x,y,z先找出来,同时统计个数(分别)(相当于去重)
CDQ(,tot);//进行CDQ分治
for(int i=;i<=tot;i++)
ans[a[i].ans+a[i].num-]+=a[i].num;//把重复的加回来
for(int i=;i<n;i++)
printf("%d\n",ans[i]);
return ;
}
陌上花开——CDQ分治的更多相关文章
- P3810 陌上花开 CDQ分治
陌上花开 CDQ分治 传送门:https://www.luogu.org/problemnew/show/P3810 题意: \[ 有n 个元素,第 i 个元素有 a_i. b_i. c_i 三个属性 ...
- 【BZOJ-3262】陌上花开 CDQ分治(3维偏序)
3262: 陌上花开 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1439 Solved: 648[Submit][Status][Discuss ...
- bzoj3262陌上花开 cdq分治
3262: 陌上花开 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 2794 Solved: 1250[Submit][Status][Discus ...
- 洛谷P3810 陌上花开 CDQ分治(三维偏序)
好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...
- 【CJOJ2433】陌上花开 CDQ分治
[CJOJ2433]陌上花开 CDQ呲嘚秋分治 WA果然呲嘚秋分治跑得比树套树还快!!!(md理论复杂度不是一样的吗) 但树套树不知道比呲嘚秋高到哪里去辣装X用 Orz hzwer 第一维sort,第 ...
- 【BZOJ3262】陌上花开 cdq分治
[BZOJ3262]陌上花开 Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义 ...
- bzoj3262: 陌上花开(cdq分治+树状数组)
3262: 陌上花开 题目:传送门 题解: %%%cdq分治 很强大的一个暴力...感觉比分块高级多了 这道题目就是一个十分经典的三维偏序的例题: 一维直接暴力排序x 二维用csq维护y 三维用树状数 ...
- BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]
Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...
- bzoj 3262 陌上花开 - CDQ分治 - 树状数组
Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...
随机推荐
- python-数据分析与展示(Numpy、matplotlib、pandas)---1
笔记内容整理自mooc上北京理工大学嵩天老师python系列课程数据分析与展示,本人小白一枚,如有不对,多加指正 1.ndarray对象的属性 .ndim..shape..size(元素个数,不是占用 ...
- MyEclipse如何清除废弃的工作空间
1.MyEclipse如何清除废弃的工作空间Windows--->Preferences--->General--->Startup and Shutdown--->Works ...
- mysql复习之一
DROP DATABASE mysql_shiyan;. cd /home/shiyanlou/Desktop git clone https://github.com/shiyanlou/SQL4 ...
- direct加载之ora-39782一例
近日,我们有个环境在数据加载到oracle的时候出现ora-39782异常,版本是11.2.经google,几乎没有什么先例,因为我们是使用oci直接写的,可见现在还使用oci接口并不多,也或者我们的 ...
- 一次 Java 内存泄漏排查过程,涨姿势
人人都会犯错,但一些错误是如此的荒谬,我想不通怎么会有人犯这种错误.更没想到的是,这种事竟发生在了我们身上.当然,这种东西只有事后才能发现真相.接下来,我将讲述一系列最近在我们一个应用上犯过的这种错误 ...
- amqp 抓包
1. wireshark 2. tcpick -yR -r file.name
- Oracle redo/undo 原理理解
一. 什么是redo(用于重做数据) redo也就是重做日志文件(redo log file),Oracle维护着两类重做日志文件:在线(online)重做日志文件和归档(archived)重做日志文 ...
- bzoj 4008 亚瑟王 - 动态规划 - 概率与期望
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...
- 解决Access查询不区分大小写问题
1.问题 比如查询用户名密码,会将所有没区分大小写的结果拿出来 2.解决 使用StrComp函数 QString execStr = QString("select * from [tabl ...
- topcoder srm list
300 305 310 315 320 325 330 335 340 350 360 370 380 390 400 410 415 420 425 430 435 440 445 450 455 ...