【做题】51NOD1518 稳定多米诺覆盖——容斥&dp
题意:求有多少种方案,用多米诺骨牌覆盖一个\(n\times m\)的棋盘,满足任意一对相邻行和列都至少有一个骨牌横跨。对\(10^9+7\)取模。
\(n,m \leq 16\)
首先,这个问题的约束比较复杂,直接dp需要较高的代价记录状态,不能通过本题。
然而,这个问题的约束可以被拆分为多个小约束(某条线被横跨),且小约束可以直接合并。这启发我们使用容斥。
这样,我们的dp计数就简化为了固定几条线不被跨越后任意覆盖。设\(f_k\)为恰有\(k\)条线不被跨越的方案数,\(g_k\)为我们计算出的固定了\(k\)条线后的覆盖方案数。那么,我们有
\]
由二项式反演可得
\]
剩下的问题就在于计算所有\(g_k\)了。我们不能枚举所有要被跨越的线,但是枚举一维之后,另一维就可以dp了。假设我们已经枚举了列上的线,令\(dp_{i,j}\)表示前\(i\)行有\(j\)条线没有跨越的方案数,暴力转移。通过预处理能做到\(O(n^3)\)。而考虑到状态中的\(j\)至于最后\(-1\)的指数有关,故可以省去。因此这个dp是\(O(n^2)\)的。
时间复杂度\(O(n^2 2^n)\)。
#include <bits/stdc++.h>
using namespace std;
const int N = 20, MOD = (int)(1e9 + 7), MAX = 16;
int n,m,dp[2][1 << MAX],f[N][N],ans,g[N],rec[N];
typedef long long ll;
void doit(int wd) {
memset(dp,0,sizeof dp);
int p = 1, lim = (1 << wd) - 1;
dp[0][(1 << wd)-1] = 1;
for (int i = 1 ; i <= n ; ++ i) {
for (int j = 1 ; j <= wd ; ++ j, p ^= 1) {
memset(dp[p],0,sizeof dp[p]);
for (int s = 0 ; s < (1 << wd) ; ++ s) {
if (((s >> (wd-1))&1) == 0)
(dp[p][(s << 1 | 1) & lim] += dp[p^1][s]) %= MOD;
else {
if ((!(s&1)) && j != 1) (dp[p][(s << 1 | 3) & lim] += dp[p^1][s]) %= MOD;
(dp[p][(s << 1) & lim] += dp[p^1][s]) %= MOD;
}
}
}
f[i][wd] = dp[p^1][lim];
}
}
void prework() {
for (int i = 1 ; i <= m ; ++ i)
doit(i);
}
vector<int> tmp;
int main() {
n = m = 16;
prework();
while (scanf("%d%d",&n,&m) != EOF) {
ans = 0;
for (int s = (1 << m >> 1) ; s < (1 << m) ; ++ s) {
tmp.clear();
int las = 0;
for (int i = 1 ; i <= m ; ++ i)
if ((s >> (i-1))&1) tmp.push_back(i-las), las = i;
for (int i = 1 ; i <= n ; ++ i) {
rec[i] = 1;
for (int j = 0 ; j < (int)tmp.size() ; ++ j)
rec[i] = 1ll * rec[i] * f[i][tmp[j]] % MOD;
}
memset(g,0,sizeof g);
for (int i = 1 ; i <= n ; ++ i) {
g[i] = rec[i];
for (int k = 1 ; k < i ; ++ k)
(g[i] += -1ll * rec[i-k] * g[k] % MOD) %= MOD;
}
if (tmp.size()&1) (ans += g[n]) %= MOD;
else (ans -= g[n]) %= MOD;
}
ans = (ans % MOD + MOD) % MOD;
printf("%d\n",ans);
}
return 0;
}
小结:本题的关键在于想到容斥,以及枚举一维后dp另一维。这两个思路都有较广的适用性,有必要熟练运用。
【做题】51NOD1518 稳定多米诺覆盖——容斥&dp的更多相关文章
- 51Nod1518 稳定多米诺覆盖 动态规划 插头dp 容斥原理
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1518.html 题目传送门 - 51Nod1518 题意 51Nod真是个好OJ ,题意概括的真好, ...
- 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)
[传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...
- Luogu P2595 [ZJOI2009]多米诺骨牌 容斥,枚举,插头dp,轮廓线dp
真的是个好(毒)题(瘤).其中枚举的思想尤其值得借鉴. \(40pts\):插头\(dp\),记录插头的同时记录每一列的连接状况,复杂度\(O(N*M*2^{n + m} )\). \(100pts\ ...
- P1282 多米诺骨牌 (差值DP+背包)
题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...
- jzoj5987. 【WC2019模拟2019.1.4】仙人掌毒题 (树链剖分+概率期望+容斥)
题面 题解 又一道全场切的题目我连题目都没看懂--细节真多-- 先考虑怎么维护仙人掌.在线可以用LCT,或者像我代码里先离线,并按时间求出一棵最小生成树(或者一个森林),然后树链剖分.如果一条边不是生 ...
- 【做题】POI2011R1 - Plot——最小圆覆盖&倍增
原文链接 https://www.cnblogs.com/cly-none/p/loj2159.html 题意:给出\(n\)个点,你需要按编号将其划分成不超过\(m\)段连续的区间,使得所有每个区间 ...
- 【做题】TCSRM601 Div1 500 WinterAndSnowmen——按位考虑&dp
原文链接https://www.cnblogs.com/cly-none/p/9695526.html 题意:求有多少对集合\(S,T\)满足:\(S \subseteq \{1,2...n \}, ...
- 【做题】uoj#370滑稽树上滑稽果——巧妙dp
一个显然的结论是最终树的形态必然是一条链.具体证明只要考虑选定树上的某一条链,然后把其他部分全部接在它后面,这样答案一定不会变劣. 那么,一开始的想法是考虑每一位的最后出现位置,但这并不容易实现.注意 ...
- 洛谷P1282 多米诺骨牌【线性dp】
题目:https://www.luogu.org/problemnew/show/P1282 题意: 给定n个牌,每个牌有一个上点数和下点数.可以通过旋转改变交换上下点数. 问使得上点数之和和下点数之 ...
随机推荐
- 54. Spiral Matrix(剑指offer 19)
Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral or ...
- 异常点/离群点检测算法——LOF
http://blog.csdn.net/wangyibo0201/article/details/51705966 在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异 ...
- sql server 将两列的值合并到另一列
select top 100 t2.FullName, * from Subject,(select id, isnull(first_name,'') +isnull(middle_name,'') ...
- File §1
The Class of File, it can be seen as one document, also can be seen as list of documents. File f = ...
- maven 核心概念
1). 项目构建过程中的各个环节 . 清理 . 编译 . 测试 . 报告 . 打包 . 安装 . 部署 2). 配置环境变量 . 配置 JDK 配置 JAVA_HOME + PATH maven 需要 ...
- yum 原理C/S原理结构图
yum 原理C/S原理结构图
- 什么是ASCII
以下内容是从百度百科学的 1)ASCII(American Standard Code for Information Interchange:美国信息交换标准代码) 2)产生原因 在计算机中,所有的 ...
- python pprint
使用 pprint 模块 pprint 模块( pretty printer ) 用于打印 Python 数据结构. 当你在命令行下打印特定数据结构时你会发现它很有用(输出格式比较整齐, 便于阅读). ...
- 【Alpha版本】冲刺阶段——Day7
[Alpha版本]冲刺阶段--Day7 阅读目录 今日进展 今日贡献量 贡献量汇总 TODOList 及项目燃尽图 [今日进展] 将项目源文件打成jar包,并运行测试 完成答辩ppt 项目运行情况 主 ...
- mongoDB启动前的系统设置,解决部分Warning问题
1.多核心系统资源分配问题 2017-10-13T17:57:02.650+0800 I CONTROL [initandlisten] ** WARNING: You are running on ...