【做题】51NOD1518 稳定多米诺覆盖——容斥&dp
题意:求有多少种方案,用多米诺骨牌覆盖一个\(n\times m\)的棋盘,满足任意一对相邻行和列都至少有一个骨牌横跨。对\(10^9+7\)取模。
\(n,m \leq 16\)
首先,这个问题的约束比较复杂,直接dp需要较高的代价记录状态,不能通过本题。
然而,这个问题的约束可以被拆分为多个小约束(某条线被横跨),且小约束可以直接合并。这启发我们使用容斥。
这样,我们的dp计数就简化为了固定几条线不被跨越后任意覆盖。设\(f_k\)为恰有\(k\)条线不被跨越的方案数,\(g_k\)为我们计算出的固定了\(k\)条线后的覆盖方案数。那么,我们有
\]
由二项式反演可得
\]
剩下的问题就在于计算所有\(g_k\)了。我们不能枚举所有要被跨越的线,但是枚举一维之后,另一维就可以dp了。假设我们已经枚举了列上的线,令\(dp_{i,j}\)表示前\(i\)行有\(j\)条线没有跨越的方案数,暴力转移。通过预处理能做到\(O(n^3)\)。而考虑到状态中的\(j\)至于最后\(-1\)的指数有关,故可以省去。因此这个dp是\(O(n^2)\)的。
时间复杂度\(O(n^2 2^n)\)。
#include <bits/stdc++.h>
using namespace std;
const int N = 20, MOD = (int)(1e9 + 7), MAX = 16;
int n,m,dp[2][1 << MAX],f[N][N],ans,g[N],rec[N];
typedef long long ll;
void doit(int wd) {
memset(dp,0,sizeof dp);
int p = 1, lim = (1 << wd) - 1;
dp[0][(1 << wd)-1] = 1;
for (int i = 1 ; i <= n ; ++ i) {
for (int j = 1 ; j <= wd ; ++ j, p ^= 1) {
memset(dp[p],0,sizeof dp[p]);
for (int s = 0 ; s < (1 << wd) ; ++ s) {
if (((s >> (wd-1))&1) == 0)
(dp[p][(s << 1 | 1) & lim] += dp[p^1][s]) %= MOD;
else {
if ((!(s&1)) && j != 1) (dp[p][(s << 1 | 3) & lim] += dp[p^1][s]) %= MOD;
(dp[p][(s << 1) & lim] += dp[p^1][s]) %= MOD;
}
}
}
f[i][wd] = dp[p^1][lim];
}
}
void prework() {
for (int i = 1 ; i <= m ; ++ i)
doit(i);
}
vector<int> tmp;
int main() {
n = m = 16;
prework();
while (scanf("%d%d",&n,&m) != EOF) {
ans = 0;
for (int s = (1 << m >> 1) ; s < (1 << m) ; ++ s) {
tmp.clear();
int las = 0;
for (int i = 1 ; i <= m ; ++ i)
if ((s >> (i-1))&1) tmp.push_back(i-las), las = i;
for (int i = 1 ; i <= n ; ++ i) {
rec[i] = 1;
for (int j = 0 ; j < (int)tmp.size() ; ++ j)
rec[i] = 1ll * rec[i] * f[i][tmp[j]] % MOD;
}
memset(g,0,sizeof g);
for (int i = 1 ; i <= n ; ++ i) {
g[i] = rec[i];
for (int k = 1 ; k < i ; ++ k)
(g[i] += -1ll * rec[i-k] * g[k] % MOD) %= MOD;
}
if (tmp.size()&1) (ans += g[n]) %= MOD;
else (ans -= g[n]) %= MOD;
}
ans = (ans % MOD + MOD) % MOD;
printf("%d\n",ans);
}
return 0;
}
小结:本题的关键在于想到容斥,以及枚举一维后dp另一维。这两个思路都有较广的适用性,有必要熟练运用。
【做题】51NOD1518 稳定多米诺覆盖——容斥&dp的更多相关文章
- 51Nod1518 稳定多米诺覆盖 动态规划 插头dp 容斥原理
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1518.html 题目传送门 - 51Nod1518 题意 51Nod真是个好OJ ,题意概括的真好, ...
- 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)
[传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...
- Luogu P2595 [ZJOI2009]多米诺骨牌 容斥,枚举,插头dp,轮廓线dp
真的是个好(毒)题(瘤).其中枚举的思想尤其值得借鉴. \(40pts\):插头\(dp\),记录插头的同时记录每一列的连接状况,复杂度\(O(N*M*2^{n + m} )\). \(100pts\ ...
- P1282 多米诺骨牌 (差值DP+背包)
题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...
- jzoj5987. 【WC2019模拟2019.1.4】仙人掌毒题 (树链剖分+概率期望+容斥)
题面 题解 又一道全场切的题目我连题目都没看懂--细节真多-- 先考虑怎么维护仙人掌.在线可以用LCT,或者像我代码里先离线,并按时间求出一棵最小生成树(或者一个森林),然后树链剖分.如果一条边不是生 ...
- 【做题】POI2011R1 - Plot——最小圆覆盖&倍增
原文链接 https://www.cnblogs.com/cly-none/p/loj2159.html 题意:给出\(n\)个点,你需要按编号将其划分成不超过\(m\)段连续的区间,使得所有每个区间 ...
- 【做题】TCSRM601 Div1 500 WinterAndSnowmen——按位考虑&dp
原文链接https://www.cnblogs.com/cly-none/p/9695526.html 题意:求有多少对集合\(S,T\)满足:\(S \subseteq \{1,2...n \}, ...
- 【做题】uoj#370滑稽树上滑稽果——巧妙dp
一个显然的结论是最终树的形态必然是一条链.具体证明只要考虑选定树上的某一条链,然后把其他部分全部接在它后面,这样答案一定不会变劣. 那么,一开始的想法是考虑每一位的最后出现位置,但这并不容易实现.注意 ...
- 洛谷P1282 多米诺骨牌【线性dp】
题目:https://www.luogu.org/problemnew/show/P1282 题意: 给定n个牌,每个牌有一个上点数和下点数.可以通过旋转改变交换上下点数. 问使得上点数之和和下点数之 ...
随机推荐
- jQuery选择器--:selected和:checked
:selected 概述 匹配所有选中的option元素 <!DOCTYPE html> <html> <head> <meta charset=" ...
- Chess (SG + 状态压缩预处理)
#include<bits/stdc++.h> #define bit(t) (1 << t) using namespace std; <<; ;//k是集合s的 ...
- vm无法删除干净老版本,新版本无法安装解决
百度中搜索“Windows Installer Clean UP 简体中文版”来下载安装好 开始程序,打开此软件, 找到vm,点remove 再次安装vm新版本,ok
- ubuntu16.04——WingIDE安装 操作服务器是一件很好玩的事情
1.在服务器上部署环境时,区分linux 系统和winddos系统 2.下载安装包: 3.输入命令操作 4.进入相对应的目录下: 5.命令 6.发生错误,更新环境 7.安装成功
- eclipse 安装和使用AmaterasUML
1. 安装AmaterasUML前,需要先安装GEF(Eclipse Graphical Editing Framework (GEF)) 采用eclipse在线安装方式安装就好. a. 查看ecli ...
- Linux服务器---邮件服务spam
安装spam spam(SpamAssassin)利用perl来进行文字分析,他会检测邮件的标题.内容.送信人,这样就可以过滤出垃圾邮件 1.安装spam.由于spam的依赖太多,用户一定要使用yum ...
- input 的radio checkbox 和 select 相关操作
1 select 获取和设置值,以及onchange事件 1下拉框option没有checked事件 可通过select 的 onchange事件进行监控,以获取其值 <select name ...
- 报文、http、https的理解
一.何为报文? 报文是网络中交换与传输的数据单位,即站点一次性要发送的数据块.报文包含了将要发送的完整的数据信息,其长短不一致,长度不限且可变. 二.报文的作用 报文多是多个系统之间需 ...
- WinCHM 制作开发知识库,So easy!!!
开发过程中可能需要一些团队需要相互参照的东西,如前后台开发中的接口定义,团队开发规范,公用的类库,开发FAQ等 ,可以考虑用WinCHM这种工具制作开发知识库,然后发布至一Web服务器上,这样开发人员 ...
- 基于ARM Cortex-M0+ 的Bootloader 参考
源: 基于ARM Cortex-M0+内核的bootloader程序升级原理及代码解析