核函数
在svm里,核函数是这样定义的。核函数是一个n*n(样本个数)的矩阵,其中:
$K_{ij}=exp(-\frac{||x^{(i)}-x^{(j)}||^{2}}{2\sigma ^{2}})$

也就是说,当两个向量越接近时,它们的核函数越接近于1;越远时,核函数越接近于0。在svm里,使用$K_{ij}$而不使用$(x^{(i)})^{T}x^{(j)}$,应该是就像神经网络或者逻辑回归里的激活函数吧。反正,以后出现两个样本内积的地方,都换成相应的核函数。那么从3最后求解的式子就变成了:
$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\alpha_{j}k_{ij}-\sum_{i=1}^{n}\alpha_{i}$,使得满足(1)$\alpha_{i}\geq 0,1 \leq i \leq n$,(2)$\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$

离群点处理

在实际问题中,可能样本点并不是能够完全分成两类(比如有可能有几个正样本在负样本中间,或者相反),那这样岂不是有可能找不到超平面了?为了处理这个问题,我们将求解问题转换一下:$min_{w,b,\xi}$ $\frac{1}{2}||w||^{2}+C\sum_{i=1}^{n}\xi _{i}$,使得$y^{(i)}(w^{T}x^{(i)}+b)\geq 1-\xi _{i} ,1 \leq i \leq n$

那么对应的拉格朗日函数为:$L(w,b,\xi,\alpha,r)=\frac{1}{2}||w||^{2}+C\sum_{i=1}^{n}\xi _{i}-\sum_{i=1}^{n}\alpha_{i}[y^{(i)}(w^{T}x^{(i)}+b)-1+\xi_{i}]-\sum_{i=1}^{n}r_{i}\xi_{i}$

同样的,其对$w,b,\xi$的导数为0,然后化简,最后得到的问题为:
$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\alpha_{j}k_{ij}-\sum_{i=1}^{n}\alpha_{i}$,使得满足(1)$0 \leq \alpha_{i}\leq C,1 \leq i \leq n$,(2)$\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$

同时有:
(1)$\alpha_{i}=0\Rightarrow y^{(i)}(w^{T}x^{(i)}+b)\geq 1$,正常样本
(2)$\alpha_{i}=C\Rightarrow y^{(i)}(w^{T}x^{(i)}+b)\leq 1$,异常样本,在支持向量之间
(3)$0< \alpha_{i}< C\Rightarrow y^{(i)}(w^{T}x^{(i)}+b)= 1$,支持向量

SVM学习笔记4-核函数和离群点的处理的更多相关文章

  1. SVM学习笔记(一)

    支持向量机即Support Vector Machine,简称SVM.一听这个名字,就有眩晕的感觉.支持(Support).向量(Vector).机器(Machine),这三个毫无关联的词,硬生生地凑 ...

  2. SVM学习笔记

    一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...

  3. SVM学习笔记(一):libsvm参数说明(转)

    LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...

  4. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  5. DOCKER 学习笔记8 Docker Swarm 集群搭建

    前言 在前面的文章中,已经介绍如何在本地通过Docker Machine 创建虚拟Docker 主机,以及也可以在本地Windows 创建虚拟主机,也是可以使用的.这一节,我们将继续学习 Docker ...

  6. Redis学习笔记(十七) 集群(上)

    Redis集群是Redis提供的分布式数据库方案,集群通过分片来进行数据共享,并提供复制和故障转移操作. 一个Redis集群通常由多个节点组成,在刚开始的时候每个节点都是相互独立的,他们处于一个只包含 ...

  7. Docker Swarm Mode 学习笔记(创建 Swarm 集群)

    Swarm 集群由管理节点与工作节点组成. 初始化集群 使用命令:docker swarm init 如果你的 Docker 主机有多个网卡, 拥有多个 IP 地址, 必须使用 --advertise ...

  8. SVM学习笔记-线性支撑向量机

    对于PLA算法来说,最终得到哪一条线是不一定的,取决于算法scan数据的过程. 从VC bound的角度来说,上述三条线的复杂度是一样的 Eout(w)≤Ein0+Ω(H)dvc= ...

  9. SVM学习笔记5-SMO

    首先拿出最后要求解的问题:$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\a ...

随机推荐

  1. es6generator

    yield语句 由于Generator函数返回的遍历器对象,只有调用next方法才会遍历下一个内部状态,所以其实提供了一种可以暂停执行的函数.yield语句就是暂停标志. yield语句只能用在 Ge ...

  2. Unity之fragment shader中如何获得视口空间中的坐标

    2种方法: 1. 使用 VPOS 或 WPOS语义,如: Shader "Test/ScreenPos1" { SubShader { Pass { CGPROGRAM #prag ...

  3. URL List by Category

    URLs List AI https://www.cnblogs.com/zlel/p/8882129.html Javascript Promise http://liubin.org/promis ...

  4. VS2017

    Visual Studio常用快捷键https://www.cnblogs.com/DonetRen/p/8182911.htmlVisual Studio 2017 Product Family S ...

  5. tensorflow tensor 索引

    问题: self.q_eval4next: (100,2) ix=[0,1,0,1---0,1](100,1) 我想取q_eval4next[:,idx] #use_doubleQ 切片用!!!! s ...

  6. html5-progress和meter用法

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  7. html5-button元素

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  8. 使用函数式编程消除重复无聊的foreach代码(Scala示例)

    摘要:使用Scala语言为例,展示函数式编程消除重复无聊的foreach代码. 难度:中级 概述 大多数开发者在开发生涯里,会面对大量业务代码.而这些业务代码中,会发现有大量重复无聊的 foreach ...

  9. Python: 字典dict: zip()

    problem: 怎样在数据字典中执行一些计算操作(比如求最小值.最大值.排序等等)? answer: eg1: 考虑下面的股票名和价格映射字典: prices = {'ACME': 45.23,'A ...

  10. Linux服务器---流量监控MRTG

    MRTG MRTG可以分析网络流量,但是它必须依赖SNMP协议.将收集到的数据生成HTML文件,以图片的形式展示出来 1.安装一些依赖软件 [root@localhost bandwidthd-2.0 ...