Leha plays a computer game, where is on each level is given a connected graph with n vertices and m edges. Graph can contain multiple edges, but can not contain self loops. Each vertex has an integer di, which can be equal to 0, 1 or  - 1. To pass the level, he needs to find a «good» subset of edges of the graph or say, that it doesn't exist. Subset is called «good», if by by leaving only edges from this subset in the original graph, we obtain the following: for every vertex i, di =  - 1 or it's degree modulo 2 is equal to di. Leha wants to pass the game as soon as possible and ask you to help him. In case of multiple correct answers, print any of them.

Input

The first line contains two integers nm (1 ≤ n ≤ 3·105, n - 1 ≤ m ≤ 3·105) — number of vertices and edges.

The second line contains n integers d1, d2, ..., dn ( - 1 ≤ di ≤ 1) — numbers on the vertices.

Each of the next m lines contains two integers u and v (1 ≤ u, v ≤ n) — edges. It's guaranteed, that graph in the input is connected.

Output

Print  - 1 in a single line, if solution doesn't exist. Otherwise in the first line k — number of edges in a subset. In the next k lines indexes of edges. Edges are numerated in order as they are given in the input, starting from 1.

Examples
input
1 0
1
output
-1
input
4 5
0 0 0 -1
1 2
2 3
3 4
1 4
2 4
output
0
input
2 1
1 1
1 2
output
1
1
input
3 3
0 -1 1
1 2
2 3
1 3
output
1
2
Note

In the first sample we have single vertex without edges. It's degree is 0 and we can not get 1.


  题目大意 给定一个不包含自环的连通图,从中选出一些边使得特定的点满足入度的奇偶性。

  这里主要的问题是要处理要求入度为奇数的点(入度为偶数的点可以不连任何边)。然后仔细研究会发现,一条路径除了两端的点增加的度数为奇数,中间经过的点增加的度数都为偶数,这就很有用了。

  现在就考虑用一堆起点和终点(其实只用将要求度数为奇数的点任选两个配对,再选剩下中的两个,以此内推)都是要求入度为奇数的路径把它们的边集异或(因为当两条路径有一条公共的边后就会出事情,所以需要把这条边删掉)后得到的新的边集一定是合法的吗?(当然所有选择的点包含了所有要求入度为奇数的点)

  当要求度数为1的点的个数为奇数的时候就不一定了。因为总会存在一个点不满足要求。那么这时候就是没有限制的点的表演时间,就找一条路径把1个没有限制的点和这个点连接起来,路上的边的选择情况异或一下。

  至于如何快速搞定这个一堆边集取反的过程呢?

  首先考虑如果最终得到的图形上出现圈是否有意义?

  答案是没有意义,这一圈的边全都可以去掉,因为圈 = 首位相连的路径,这将意味着圈上任意点的度数加了2,这对奇偶性没有影响,是多余的,可以去掉。

  所以我们选择每条路径的起点和终点的时候都要求它们不同,所以最终得到的图形是森林。既然是在树上,就可以干很多事情了,比如树上差分。

  然后把对 边的取反信息 下放到子节点上(dfs树上),接着从任意一点进行一次dfs就好了。

Code

 /**
* Codeforces
* Problem#431D
* Accepted
* Time: 405ms
* Memory: 41000k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; int n, m;
int *gs;
int *rev;
vector<int> *g;
vector<int> *ig;
vector<int> c1, c2; inline void init() {
scanf("%d%d", &n, &m);
g = new vector<int>[n + ];
ig = new vector<int>[n + ];
gs = new int[(n + )];
rev = new int[(n + )];
memset(rev, , sizeof(int) * (n + ));
for(int i = ; i <= n; i++) {
scanf("%d", gs + i);
if(gs[i] == )
c1.push_back(i);
else if(gs[i] == -)
c2.push_back(i);
}
for(int i = , u, v; i <= m; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
ig[u].push_back(i);
ig[v].push_back(i);
}
} vector<int> res;
boolean *vis;
void dfs(int node) {
vis[node] = true;
for(int i = ; i < (signed)g[node].size(); i++) {
int& e = g[node][i];
if(vis[e]) continue;
dfs(e);
if(rev[e]) res.push_back(ig[node][i]);
rev[node] ^= rev[e];
}
} inline void solve() {
int sc1 = (signed)c1.size(), sc2 = (signed)c2.size();
if((sc1 & ) && !sc2) {
puts("-1");
return;
}
vis = new boolean[(n + )];
memset(vis, false, sizeof(boolean) * (n + ));
for(int i = ; i < sc1; i += )
rev[c1[i]] = rev[c1[i - ]] = ;
if(sc1 & )
rev[c1[sc1 - ]] = rev[c2[]] = ;
dfs();
sc1 = (signed)res.size();
printf("%d\n", sc1);
for(int i = ; i < sc1; i++)
printf("%d\n", res[i]);
} int main() {
init();
solve();
return ;
}

Codeforces 841D Leha and another game about graph - 差分的更多相关文章

  1. CodeForces - 841D Leha and another game about graph

    给出一个连通图,并给每个点赋一个d值0或1或-1,要求选出一个边的集合,使得所有的点i要么d[i] == -1,要么 dgree[i] % 2 == d[i],dgree[i]代表i结点的度数. 考虑 ...

  2. CodeForces 840B - Leha and another game about graph | Codeforces Round #429(Div 1)

    思路来自这里,重点大概是想到建树和无解情况,然后就变成树形DP了- - /* CodeForces 840B - Leha and another game about graph [ 增量构造,树上 ...

  3. 【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))

    [题意]给定n个点和m条无向边(有重边无自环),每个点有权值di=-1,0,1,要求仅保留一些边使得所有点i满足:di=-1或degree%2=di,输出任意方案. [算法]数学+搜索 [题解] 最关 ...

  4. Codeforces Round #429 (Div. 2/Div. 1) [ A/_. Generous Kefa ] [ B/_. Godsend ] [ C/A. Leha and Function ] [ D/B. Leha and another game about graph ] [ E/C. On the Bench ] [ _/D. Destiny ]

    PROBLEM A/_ - Generous Kefa 题 OvO http://codeforces.com/contest/841/problem/A cf 841a 解 只要不存在某个字母,它的 ...

  5. Codeforces Round #429 (Div. 2) - D Leha and another game about graph

    Leha and another game about graph 题目大意:给你一个图,每个节点都有一个v( -1 , 0 ,1)值,要求你选一些边,使v值为1 的点度数为奇数,v值为0的度数为偶数 ...

  6. Codeforces 841 D - Leha and another game about graph

    D - Leha and another game about graph 思路:首先,如果所有点的度数加起来是奇数,且没有-1,那么是不可以的. 其他情况都可以构造,我们先dfs出一个生成树,然后从 ...

  7. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  8. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory

    Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...

  9. CodeForces 840A - Leha and Function | Codeforces Round #429 (Div. 1)

    /* CodeForces 840A - Leha and Function [ 贪心 ] | Codeforces Round #429 (Div. 1) A越大,B越小,越好 */ #includ ...

随机推荐

  1. 12月centos单词

    ---恢复内容开始--- UNreachable:adj.(network server unreachable) 不能达到的; 及不到的; 取不到的; 不能得到的; rsync: rsync [re ...

  2. OBV15 案例5,上M10拉高出货

  3. node.js初识02

    node.js相较于那些老的服务器语言,他的优势在于,节省了I/O的时间,主要的特点是单线程,非阻塞和事件驱动,其实三个说的是同一个事情,相较于多线程而言,单线程的特点是,使用的那一条线程的cpu的利 ...

  4. Docker中mysql修改配置导致无法启动的docker容器

    宿主机中查找my.cnf文件 # find / -name my.cnf |grep '/etc/mysql/my.cnf' 找到: /data/docker/overlay2/dfc2ddbed53 ...

  5. Python并发编程之线程池/进程池--concurrent.futures模块

    一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/ ...

  6. arc 093 C – Traveling Plan

    题意: 给出横坐标上一系列的点,一个人从0出发按照下标顺序访问每一个点,再回到0点. 问每次如果去掉一个点,那么访问的距离变为多少. 思路: 去掉这个点,那么就减去这个点到上一点到这一点的距离,减去这 ...

  7. 【Hive学习之四】Hive 案例

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  8. Lua数据类型

    [1]Lua数据类型 Lua语言共有8种基本类型 [1] nil 空.最简单,有且仅有值nil,表示一个无效值(在条件表达式中相当于false) [2] boolean 布尔.包含两个值:false和 ...

  9. c++学习笔记(七)- lambda表达式 迭代器 算法

    关于lambda表达式: 刷题的时候遇到一句代码不懂: char ch = *it;auto it2 = find_if(it, b.end(), [ch](char x){ return x != ...

  10. Spring源码阅读(二)

    我们先看AbstractBeanFactory.getBean方法,这个方法通过bean名称类型等信息获取类实例,如果实例不存在则生产并缓存. //-------------------------- ...