Codeforces 841D Leha and another game about graph - 差分
Leha plays a computer game, where is on each level is given a connected graph with n vertices and m edges. Graph can contain multiple edges, but can not contain self loops. Each vertex has an integer di, which can be equal to 0, 1 or - 1. To pass the level, he needs to find a «good» subset of edges of the graph or say, that it doesn't exist. Subset is called «good», if by by leaving only edges from this subset in the original graph, we obtain the following: for every vertex i, di = - 1 or it's degree modulo 2 is equal to di. Leha wants to pass the game as soon as possible and ask you to help him. In case of multiple correct answers, print any of them.
The first line contains two integers n, m (1 ≤ n ≤ 3·105, n - 1 ≤ m ≤ 3·105) — number of vertices and edges.
The second line contains n integers d1, d2, ..., dn ( - 1 ≤ di ≤ 1) — numbers on the vertices.
Each of the next m lines contains two integers u and v (1 ≤ u, v ≤ n) — edges. It's guaranteed, that graph in the input is connected.
Print - 1 in a single line, if solution doesn't exist. Otherwise in the first line k — number of edges in a subset. In the next k lines indexes of edges. Edges are numerated in order as they are given in the input, starting from 1.
1 0
1
-1
4 5
0 0 0 -1
1 2
2 3
3 4
1 4
2 4
0
2 1
1 1
1 2
1
1
3 3
0 -1 1
1 2
2 3
1 3
1
2
In the first sample we have single vertex without edges. It's degree is 0 and we can not get 1.
题目大意 给定一个不包含自环的连通图,从中选出一些边使得特定的点满足入度的奇偶性。
这里主要的问题是要处理要求入度为奇数的点(入度为偶数的点可以不连任何边)。然后仔细研究会发现,一条路径除了两端的点增加的度数为奇数,中间经过的点增加的度数都为偶数,这就很有用了。
现在就考虑用一堆起点和终点(其实只用将要求度数为奇数的点任选两个配对,再选剩下中的两个,以此内推)都是要求入度为奇数的路径把它们的边集异或(因为当两条路径有一条公共的边后就会出事情,所以需要把这条边删掉)后得到的新的边集一定是合法的吗?(当然所有选择的点包含了所有要求入度为奇数的点)
当要求度数为1的点的个数为奇数的时候就不一定了。因为总会存在一个点不满足要求。那么这时候就是没有限制的点的表演时间,就找一条路径把1个没有限制的点和这个点连接起来,路上的边的选择情况异或一下。
至于如何快速搞定这个一堆边集取反的过程呢?
首先考虑如果最终得到的图形上出现圈是否有意义?
答案是没有意义,这一圈的边全都可以去掉,因为圈 = 首位相连的路径,这将意味着圈上任意点的度数加了2,这对奇偶性没有影响,是多余的,可以去掉。
所以我们选择每条路径的起点和终点的时候都要求它们不同,所以最终得到的图形是森林。既然是在树上,就可以干很多事情了,比如树上差分。
然后把对 边的取反信息 下放到子节点上(dfs树上),接着从任意一点进行一次dfs就好了。
Code
/**
* Codeforces
* Problem#431D
* Accepted
* Time: 405ms
* Memory: 41000k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; int n, m;
int *gs;
int *rev;
vector<int> *g;
vector<int> *ig;
vector<int> c1, c2; inline void init() {
scanf("%d%d", &n, &m);
g = new vector<int>[n + ];
ig = new vector<int>[n + ];
gs = new int[(n + )];
rev = new int[(n + )];
memset(rev, , sizeof(int) * (n + ));
for(int i = ; i <= n; i++) {
scanf("%d", gs + i);
if(gs[i] == )
c1.push_back(i);
else if(gs[i] == -)
c2.push_back(i);
}
for(int i = , u, v; i <= m; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
ig[u].push_back(i);
ig[v].push_back(i);
}
} vector<int> res;
boolean *vis;
void dfs(int node) {
vis[node] = true;
for(int i = ; i < (signed)g[node].size(); i++) {
int& e = g[node][i];
if(vis[e]) continue;
dfs(e);
if(rev[e]) res.push_back(ig[node][i]);
rev[node] ^= rev[e];
}
} inline void solve() {
int sc1 = (signed)c1.size(), sc2 = (signed)c2.size();
if((sc1 & ) && !sc2) {
puts("-1");
return;
}
vis = new boolean[(n + )];
memset(vis, false, sizeof(boolean) * (n + ));
for(int i = ; i < sc1; i += )
rev[c1[i]] = rev[c1[i - ]] = ;
if(sc1 & )
rev[c1[sc1 - ]] = rev[c2[]] = ;
dfs();
sc1 = (signed)res.size();
printf("%d\n", sc1);
for(int i = ; i < sc1; i++)
printf("%d\n", res[i]);
} int main() {
init();
solve();
return ;
}
Codeforces 841D Leha and another game about graph - 差分的更多相关文章
- CodeForces - 841D Leha and another game about graph
给出一个连通图,并给每个点赋一个d值0或1或-1,要求选出一个边的集合,使得所有的点i要么d[i] == -1,要么 dgree[i] % 2 == d[i],dgree[i]代表i结点的度数. 考虑 ...
- CodeForces 840B - Leha and another game about graph | Codeforces Round #429(Div 1)
思路来自这里,重点大概是想到建树和无解情况,然后就变成树形DP了- - /* CodeForces 840B - Leha and another game about graph [ 增量构造,树上 ...
- 【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))
[题意]给定n个点和m条无向边(有重边无自环),每个点有权值di=-1,0,1,要求仅保留一些边使得所有点i满足:di=-1或degree%2=di,输出任意方案. [算法]数学+搜索 [题解] 最关 ...
- Codeforces Round #429 (Div. 2/Div. 1) [ A/_. Generous Kefa ] [ B/_. Godsend ] [ C/A. Leha and Function ] [ D/B. Leha and another game about graph ] [ E/C. On the Bench ] [ _/D. Destiny ]
PROBLEM A/_ - Generous Kefa 题 OvO http://codeforces.com/contest/841/problem/A cf 841a 解 只要不存在某个字母,它的 ...
- Codeforces Round #429 (Div. 2) - D Leha and another game about graph
Leha and another game about graph 题目大意:给你一个图,每个节点都有一个v( -1 , 0 ,1)值,要求你选一些边,使v值为1 的点度数为奇数,v值为0的度数为偶数 ...
- Codeforces 841 D - Leha and another game about graph
D - Leha and another game about graph 思路:首先,如果所有点的度数加起来是奇数,且没有-1,那么是不可以的. 其他情况都可以构造,我们先dfs出一个生成树,然后从 ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces 1109D. Sasha and Interesting Fact from Graph Theory
Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...
- CodeForces 840A - Leha and Function | Codeforces Round #429 (Div. 1)
/* CodeForces 840A - Leha and Function [ 贪心 ] | Codeforces Round #429 (Div. 1) A越大,B越小,越好 */ #includ ...
随机推荐
- 题外话:Lua脚本语言存在的意义
纯属个人见解. 大致来说:c/c++执行效率高,游戏中一些性能敏感的复杂计算需要用c/c++来实现,防止游戏卡顿和低帧率.这些复杂计算包括战斗逻辑,复杂AI,骨骼动画蒙皮骨骼点的坐标计算等等.但c++ ...
- Servlet交互与JSP
主要内容介绍 数据共享与页面跳转 1. 为什么要有跳转: Servlet需要跳转到其它Servlet中,因为我们需要职责分明,不同Servlet来完成不同的功能 Servlet跳转到JSP中,Serv ...
- unity3d-知识汇总
itween下载 http://www.youkexueyuan.com/exp_show/1147.html 代码修改精灵图片的透明度 UIBp.GetComponent<Image>( ...
- WebApi关于配置全局返回Json数据格式时间以及命名小写
1.直接在Global文件中配置: 1 var formatters = GlobalConfiguration.Configuration.Formatters; 2 var jsonFormatt ...
- 图片和base64互转
最近项目需要将图片以base64编码,这里记录下相关的一些东西. 需要导入两个类:sun.misc.BASE64Encoder sun.misc.BASE64Decoder 下面是相关java代码: ...
- 找不到System.Web.Optimization命名空间
找不到System.Web.Optimization命名空间,无法完成BundleConfig.cs内容的添加. 解决方法如下:打开程序包管理控制台,在控制台中输入:Install-PackageMi ...
- ASP.NET JSON(转http://www.360doc.com/content/14/0615/21/18155648_386887590.shtml)
概念介绍还是先简单说说Json的一些例子吧.注意,以下概念是我自己定义的,可以参考.net里面的TYPE的模型设计如果有争议,欢迎提出来探讨!1.最简单:{"total":0} t ...
- Echo团队团队展示
班级:软件工程1916|W 作业:团队作业第一次-团队展示 团队名称:Echo 课程目标:展示团队 成员信息 队员学号 队员姓名 个人博客地址 备注 221600418 黄少勇 http://www. ...
- 【转】LoadRunner压力测试:测试报告结果分析
见:https://blog.csdn.net/haoui123/article/details/62036723
- 使用Groovy+Spock轻松写出更简洁的单测
当无法避免做一件事时,那就让它变得更简单. 概述 单测是规范的软件开发流程中的必不可少的环节之一.再伟大的程序员也难以避免自己不犯错,不写出有BUG的程序.单测就是用来检测BUG的.Java阵营中,J ...