来自:https://blog.csdn.net/shenxiaoming77/article/details/72627882

来自:https://blog.csdn.net/u010705209/article/details/53037481

在分类模型中,roc曲线和auc曲线作为衡量一个模型拟合程度的指标。

分类模型评估:

 指标  描述  Scikit-learn函数
 Precision  AUC  from sklearn.metrics import precision_score
 Recall  召回率  from sklearn.metrics import recall_score
 F1  F1值  from sklearn.metrics import f1_score
 Confusion Matrix  混淆矩阵  from sklearn.metrics import confusion_matrix
 ROC  ROC曲线  from sklearn.metrics import confusion_matrix
 AUC  ROC曲线下的面积  from sklearn.metrics import auc

回归模型评估:

指标 描述 Scikit-learn函数
Mean Square Error (MSE, RMSE) 平均方差 from sklearn.metrics import mean_squared_error
Absolute Error (MAE, RAE) 绝对误差 from sklearn.metrics import mean_absolute_error, median_absolute_error
R-Squared R平方值 from sklearn.metrics import r2_score

roc和auc定义

roc全称是“受试者工作特征”(recevier operating characteristic)。roc曲线的面积就是auc(area under the curve)。auc用于衡量“二分类问题”机器学习算法性能(泛化能力)。

1. 了解roc首先了解混淆矩阵:

例如用一个分类模型来判别一个水果是苹果还是梨,混淆矩阵将会模型的预测结果总结成如下表所示的表格。

     模型预测结果  模型预测结果
    苹果
真是结果 苹果 10 2
真是结果 3 15

通过上述表格可以看出,样本的数量一共是10+2+3+15=3010+2+3+15=30个样本。其中苹果有10+2=1210+2=12个,梨有3+15=183+15=18个。该模型预测的苹果的数量是10+3=1310+3=13个,有1010个是预测正确的,33个是预测错误的。该模型预测的梨的数量是2+15=172+15=17个,其中有1515个是预测正确的,22个是预测错误的。

混淆矩阵

对于一个二分类的模型,其模型的混淆矩阵是一个2×22×2的矩阵。如下图所示:

    Predicted condition Predicted condition
    positive negative
True condition positive True Positive True Negative
True condition negative False Positive False Negative

混淆矩阵比模型的精度的评价指标更能够详细地反映出模型的”好坏”。模型的精度指标,在正负样本数量不均衡的情况下,会出现容易误导的结果

  • True Positive:真正类(TP),样本的真实类别是正类,并且模型预测的结果也是正类。
  • False Negative:假负类(FN),样本的真实类别是正类,但模型将其预测成为负类。
  • False Positive:假正类(FP),样本的真实类别是负类,但模型将其预测成正类。
  • True Negative:真负类(TN),样本的真实类别是负类,并且模型将其预测成为负类。

混淆矩阵中,衍生出各种评价的指标。

精度:

模型预测正确的个数 / 样本的总个数,

一般情况下,模型的精度越高,说明模型的效果越好。

召回率:

模型预测为正类的样本的数量,占总的正类样本数量的比值。

Recall越高,说明有更多的正类样本被模型预测正确,模型的效果越好。

TPR:

样本中的真实正例类别总数即TP+FN。TPR即True Positive Rate,TPR = TP/(TP+FN)。

FPR:
同理,样本中的真实反例类别总数为FP+TN。FPR即False Positive Rate,FPR=FP/(TN+FP)。

截断点:

还有一个概念叫”截断点”。机器学习算法对test样本进行预测后,可以输出各test样本对某个类别的相似度概率。比如t1是P类别的概率为0.3,一般我们认为概率低于0.5,t1就属于类别N。这里的0.5,就是”截断点”。 
总结一下,对于计算ROC,最重要的三个概念就是TPRFPR截断点

截断点取不同的值,TPRFPR的计算结果也不同。将截断点不同取值下对应的TPRFPR结果画于二维坐标系中得到的曲线,就是ROC曲线。横轴用FPR表示。

2. sklearn计算roc

sklearn给出了一个计算roc的例子:

y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)

通过计算,得到的结果(TPRFPR截断点)为

fpr = array([ 0. ,  0.5,  0.5,  1. ])
tpr = array([ 0.5, 0.5, 1. , 1. ])
thresholds = array([ 0.8 , 0.4 , 0.35, 0.1 ]) #截断点

将结果中的FPR与TPR画到二维坐标中,得到的ROC曲线如下(蓝色线条表示),ROC曲线的面积用AUC表示(淡黄色阴影部分)。

详细计算过程:

y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])

(1). 分析数据

y是一个一维数组(样本的真实分类)。数组值表示类别(一共有两类,1和2)。我们假设y中的1表示反例,2表示正例。即将y重写为:

y_true = [0, 0, 1, 1]

score即各个样本属于正例的概率。

(2). 针对score,将数据排序

样本 预测属于P的概率(score) 真实类别
y[0] 0.1 N
y[2] 0.35 P
y[1] 0.4 N
y[3] 0.8 P

(3). 将截断点依次取值为score值

将截断点依次取值为0.1, 0.35, 0.4, 0.8时,计算TPR和FPR的结果。

3.1. 截断点为.01

说明只要score>=0.1,它的预测类别就是正例。 
此时,因为4个样本的score都大于等于0.1,所以,所有样本的预测类别都为P。

scores = [0.1, 0.4, 0.35, 0.8]
y_true = [0, 0, 1, 1]
y_pred = [1, 1, 1, 1]

TPR = TP/(TP+FN) = 1 
FPR = FP/(TN+FP) = 1

3.2. 截断点为0.35

说明只要score>=0.35,它的预测类别就是P。 
此时,因为4个样本的score有3个大于等于0.35。所以,所有样本的预测类有3个为P(2个预测正确,1一个预测错误);1个样本被预测为N(预测正确)。

scores = [0.1, 0.4, 0.35, 0.8]
y_true = [0, 0, 1, 1]
y_pred = [0, 1, 1, 1]

TPR = TP/(TP+FN) = 1 
FPR = FP/(TN+FP) = 0.5

3.3. 截断点为0.4

说明只要score>=0.4,它的预测类别就是P。 
此时,因为4个样本的score有2个大于等于0.4。所以,所有样本的预测类有2个为P(1个预测正确,1一个预测错误);2个样本被预测为N(1个预测正确,1一个预测错误)。

scores = [0.1, 0.4, 0.35, 0.8]
y_true = [0, 0, 1, 1]
y_pred = [0, 1, 0, 1]

TPR = TP/(TP+FN) = 0.5 
FPR = FP/(TN+FP) = 0.5

3.4. 截断点为0.8

说明只要score>=0.8,它的预测类别就是P。所以,所有样本的预测类有1个为P(1个预测正确);3个样本被预测为N(2个预测正确,1一个预测错误)。

scores = [0.1, 0.4, 0.35, 0.8]
y_true = [0, 0, 1, 1]
y_pred = [0, 0, 0, 1]

TPR = TP/(TP+FN) = 0.5 
FPR = FP/(TN+FP) = 0

(4). 心得

用下面描述表示TPR和FPR的计算过程,更容易记住

  • TPR:真实的正例中,被预测正确的比例
  • FPR:真实的反例中,被预测正确的比例

ROC与AUC原理的更多相关文章

  1. 机器学习-Confusion Matrix混淆矩阵、ROC、AUC

    本文整理了关于机器学习分类问题的评价指标——Confusion Matrix.ROC.AUC的概念以及理解. 混淆矩阵 在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型 ...

  2. ROC和AUC介绍以及如何计算AUC ---好!!!!

    from:https://www.douban.com/note/284051363/?type=like 原帖发表在我的博客:http://alexkong.net/2013/06/introduc ...

  3. Area Under roc Curve(AUC)

    AUC是一种用来度量分类模型好坏的一个标准. ROC分析是从医疗分析领域引入了一种新的分类模型performance评判方法. ROC的全名叫做Receiver Operating Character ...

  4. 【转】ROC和AUC介绍以及如何计算AUC

    转自:https://www.douban.com/note/284051363/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器( ...

  5. ROC和AUC介绍以及如何计算AUC

    原文:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 为什么使用ROC曲线 既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因 ...

  6. ROC和AUC理解

    一. ROC曲线概念 二分类问题在机器学习中是一个很常见的问题,经常会用到.ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under th ...

  7. 信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC

    原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常 ...

  8. 评估分类器性能的度量,像混淆矩阵、ROC、AUC等

    评估分类器性能的度量,像混淆矩阵.ROC.AUC等 内容概要¶ 模型评估的目的及一般评估流程 分类准确率的用处及其限制 混淆矩阵(confusion matrix)是如何表示一个分类器的性能 混淆矩阵 ...

  9. ROC,AUC,Precision,Recall,F1的介绍与计算(转)

    1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...

随机推荐

  1. zabbix agent配置详解(windows)

    客户端操作  标注:监控zabbix_agentd客户端安装对象是win server 2008操作系统 64位. 1.  下载zabbix_agentd监控客户端软件安装包(windows操作系统客 ...

  2. Maven配置阿里云镜像仓库

    配置文件:D:\MyDev\Maven\apache-maven-3.0.5\conf\settings.xml <mirrors> <mirror> <id>al ...

  3. Spring/SpringMVC/MyBatis(持久层、业务层、控制层思路小结)

    准备工作: ## 7 导入省市区数据到数据库中 1. 从FTP下载SQL脚本文件 2. 把脚本文件移动到易于描述绝对路径的位置 3. 进入MySQL控制台 4. 使用`xxx_xxx`数据库 5. 运 ...

  4. The logback manual #01# Introduction

    依赖包如下pom.xml: <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&qu ...

  5. Docker学习笔记之Docker 的简历

    0x00 概述 在了解虚拟化和容器技术后,我们就更容易理解 Docker 的相关知识了.在这一小节中,我将介绍关于 Docker 的出现和发展,Docker 背后的技术.同时,我们将阐述 Docker ...

  6. django模板-通过a标签生成链接并跳转

    views.py from django.shortcuts import render from django.http import HttpResponse def index(request) ...

  7. v-text v-html等指令的使用

    v-text:以纯文本方式显示数据: v-html:可以识别HTML标签: v-once:只渲染元素或组件一次: v-pre:不进行编译,直接显示内容: v-cloak:可以隐藏未编译的 Mustac ...

  8. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

  9. alert.log中的minact-scn: useg scan erroring out with error e:376警告

    早上,开发说昨晚一台服务器的undo好像有异常,早上上去一看,库停了,正常startup之后,随手crud了一把,都正常.去看alert.log日志,发现undo某个数据块访问报I/O读错误,如下: ...

  10. 深度学习demo

    1. Stanford Convolutional Neural Network on the MNIST digits dataset http://cs.stanford.edu/people/k ...