BZOJ1042 [HAOI2008]硬币购物 完全背包 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - BZOJ1042
题目概括
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。
题解
一开始没看数据范围,觉得是类似状压的dp。
然后看了看数据范围,懵逼了。
然后发现可以写容斥!
我们先当作完全背包,不考虑限制,把花费每种价格的方案数弄出来。
然后容斥一下就可以了。
具体容斥:所有情况 - 第一种货币超限的 - 第二种货币超限的…… + 第1、2种货币都超限的………………
代码
连续5次1A了,庆祝一下。
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long LL;
const int N=,N_size=N+;
int c[],tot,d[],s;
LL dp[N_size];
int main(){
scanf("%d%d%d%d%d",&c[],&c[],&c[],&c[],&tot);
memset(dp,,sizeof dp);
dp[]=;
for (int i=;i<;i++)
for (int j=;j<=N;j++)
if (j+c[i]<=N)
dp[j+c[i]]+=dp[j];
while (tot--){
scanf("%d%d%d%d%d",&d[],&d[],&d[],&d[],&s);
LL ans=;
for (int i=;i<(<<);i++){
int v=s,cnt=;
for (int j=;j<;j++)
if ((i>>j)&)
cnt++,v-=(d[j]+)*c[j];
if (v<)
continue;
if (cnt&)
ans-=dp[v];
else
ans+=dp[v];
}
printf("%lld\n",ans);
}
return ;
}
BZOJ1042 [HAOI2008]硬币购物 完全背包 容斥原理的更多相关文章
- Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理
Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理 [Problem Description] 略 [Solution] 上述题目等价于:有\(4\)种物品,每种物品有\(d_i ...
- BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2924 Solved: 1802 [Submit][St ...
- BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...
- [bzoj1042][HAOI2008][硬币购物] (容斥原理+递推)
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
- bzoj1042: [HAOI2008]硬币购物
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 【BZOJ】1042: [HAOI2008]硬币购物(dp+容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1042 一开始写了个O(nv)的背包,果断tle... 看了题解,,好神..用了组合数学中的多重集合方 ...
- BZOJ-1042:硬币购物(背包+容斥)
题意:硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 思路:这么老的题,居然今天才做到. ...
- BZOJ1042:[HAOI2008]硬币购物(DP,容斥)
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
- 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)
传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...
随机推荐
- C++常量 运算符
\n 换行 光标移到下一行 \0 空值 \t 水平制表符 \r 回车 光标回到本行开头 ...
- 未能加载文件或程序集System.Web.Http.WebHost
解决方案:只需要在项目的bin文件夹下放入下面三个dll. 将:C:\Program Files (x86)\Microsoft ASP.NET\ASP.NET MVC 4\Assemblies中的 ...
- PHP二叉树
<?php /******************************************************** * 我写的PHP都是从C语言的数据结构中演化而来********* ...
- vue学习一:新建或打开vue项目(vue-cli2)
vue-cli3的操作参考文章:vue/cli 3.0脚手架搭建,浅谈vue-cli 3 和 vue-cli 2的区别 1.前期准备: node.js环境,安装node npm或者cnpm(npm的淘 ...
- ubuntu 上下左右键变成ABCD
1.在ubuntu终端环境出现: 这表示你正在insert mode.... 按esc,回到command mode,上下左右就回复到正常的方向键功能了 2.可能写的程序是在insert mode(r ...
- activity 解析
acitvity的四种状态: running.paused.stopped.killed 生命周期: onCreate()用来加载资源布局 onStart()启动activity,用户已经可以看到界面 ...
- ubuntu14.04 下安装 gsl 科学计算库
GSL(GNU Scientific Library)作为三大科学计算库之一,除了涵盖基本的线性代数,微分方程,积分,随机数,组合数,方程求根,多项式求根,排序等,还有模拟退火,快速傅里叶变换,小波, ...
- Django 利用 Pagination 简单分页
Django自身提供了一些类来实现管理分页,数据被分在不同的页面中,并带有“上一页/下一页”标签.这个类叫做Pagination,其定义位于 django/core/paginator.py 中. 一 ...
- setInterval的用法
function show1(){ console.log("每隔1秒显示一次");}function show2(str){ console.log(str);}se ...
- Jenkins实现定时、顺序编译
1 Jenkins实现定时.顺序编译 l Jenkins 编译流程:更新代码,编译公共服务,编译普通服务(普通服务依赖于公共服务).以下图为例,首先执行 update,再执行 icto_c ...