题解:

首先想到了标算。。然后证明了一发是错的(事实证明很智障)

先说正确性比较显然的O(n^2)算法

令f[i][j]表示前i个物品,匹配到第j个括号,最大值是多少

g[i][j]表示前i个物品,匹配到第j个括号,最小值是多少

然后这个转移是O(1)的 状态是n^2的

被状态局限了就没法优化了

标算:

令f[i]表示取第i个的情况下最大到达的位置,f[i+1]由f[ 1-----i ]转移

我们来证明一下这个的正确性

原命题:每个f[i]一定是由前面某个f[j]转移过来

逆命题:其中有一个f[i]是由j的某个非最优状态转移而来

既然f[i]由j的某个非最优状态转移,那么f[j]+1这个符号一定与a[i],a[j]的大小不符

举个例子 a[i]是3 a[j]是4 大小关系是>><

现在f[j]=2,即下一位要求a[j]<a[i] 所以a[i]和a[j]不满足要求

那么一定是由前面一个>转移的(因为满足a[j]>a[i])

那我们看一下f[j]是怎么来的 前面一定有个k满足a[k]>a[j]

那么a[k]>a[j]>a[i] 这样 f[i]一定是可以从a[k]转移而来的

原命题得证

然后有了这个dp方程显然线段树优化一下就可以了

#14 [BZOJ2090/2089] [Poi2010]Monotonicity 2/Monotonicity的更多相关文章

  1. [BZOJ2090/2089] [Poi2010]Monotonicity 2/Monotonicity 树状数组优化dp

    这个dp乍看不科学,仔细一看更不科学,所以作为一个执着BOY,我决定要造数据卡死波兰人民,但是我造着造着就......证出来了......... 这个就是把 < > =分开讨论每次找到f[ ...

  2. 【BZOJ2090/2089】[Poi2010]Monotonicity 2 动态规划+线段树

    [BZOJ2090/2089][Poi2010]Monotonicity Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k].选出一个长度 ...

  3. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  4. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  5. BZOJ2090 : [Poi2010]Monotonicity 2

    设f[i]表示以i为结尾的最长的合法序列的长度,=号直接维护,<号和>号用两棵树状数组维护即可,时间复杂度$O(n\log n)$. #include<cstdio> #def ...

  6. [补档][Poi2010]Monotonicity 2

    [Poi2010]Monotonicity 2 题目 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. 选出一个长度为L的子序列(不要求连续),要求这个子序列 ...

  7. Monotonicity 2[POI2010]

    题目描述 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k].选出一个长度为L的子序列(不要求连续),要求这个子序列的第i项和第i+1项的的大小关系为s[(i-1 ...

  8. [Poi2010]Monotonicity 2 线段树

    这道题考试的时候先打了个dfs暴力.又打了个O(n²)的动规.然后竟然心血来潮拍了一下..明明知道过不去的...然后水了50分(20个测试点这么多啊啊啊啊). 因为它已经提前给你如果长度为i时下一位的 ...

  9. Poi2010 Monotonicity 2

    树状数组优化dp 可以证明最优解一定是通过之前的最优转移过来的,所以每一个点只需要保存以该节点为结尾的最长长度即可 对于不同符号,等于号维护数组,大于小于维护树状数组 #include<cstd ...

随机推荐

  1. Codeforces 954 G. Castle Defense

    http://codeforces.com/problemset/problem/954/G 二分答案 检验的时候,从前往后枚举,如果发现某个位置的防御力<二分的值,那么新加的位置肯定是越靠后越 ...

  2. 收集服务器网卡和IP信息

    收集服务器网卡和IP信息 Python2环境 #!/usr/bin/python2 # -*- coding:utf-8 -*- import os,sys import socket, fcntl, ...

  3. C语言实现二叉树的建立、遍历以及表达式的计算

    实现代码 #include <stdio.h> #include <stdlib.h> #include <malloc.h> #include <ctype ...

  4. Winform程序双向绑定

    程序比较简单,一看就明白,主要需要实现INotifyPropertyChanged using System; using System.Collections.Generic; using Syst ...

  5. Bleve代码阅读(二)——Index Mapping

    引言 Bleve是Golang实现的一个全文检索库,类似Lucene之于Java.在这里通过阅读其代码,来学习如何使用及定制检索功能.也是为了通过阅读代码,学习在具体环境下Golang的一些使用方式. ...

  6. cocos2d-x 2.1.4 项目配置过程

    http://cocos2d-x.org 下载cocos2d-x 2.1.4 使用project-creator.py脚本创建Cocos2d-win32 Application项目 1.先下载Wind ...

  7. 第15月第22天 libz.dylib

    1. 3.在弹出的对话框中输入"cmd"+"shift"+"g" 4 4.输入/usr/lib https://jingyan.baidu. ...

  8. 第2章 线性表《C#数据结构和算法》

    ( )除第一个位置的数据 元素外,其它数据元素位置的前面都只有一个数据元素:( )除最后一个位置的 数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是 一个接一个的排列.因此,可以 ...

  9. Django开发笔记四

    Django开发笔记一 Django开发笔记二 Django开发笔记三 Django开发笔记四 Django开发笔记五 Django开发笔记六 1.邮箱激活 users app下,models.py: ...

  10. mysql服务里面没有启动项

    解决:5.0版本:开始->运行->cmd,进到mysql安装的bin目录D:\MySQL\bin>mysqld.exe -installService successfully in ...