什么是交叉检验(K-fold cross-validation)

 

K层交叉检验就是把原始的数据随机分成K个部分。在这K个部分中,选择一个作为测试数据,剩下的K-1个作为训练数据。

交叉检验的过程实际上是把实验重复做K次,每次实验都从K个部分中选择一个不同的部分作为测试数据(保证K个部分的数据都分别做过测试数据),剩下的K-1个当作训练数据进行实验,最后把得到的K个实验结果平均。

http://www.ilovematlab.cn/thread-49143-1-1.html

交叉验证(CrossValidation)方法思想简介
以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set),首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标.常见CV的方法如下:
 
1).Hold-Out Method
将原始数据随机分为两组,一组做为训练集,一组做为验证集,利用训练集训练分类器,然后利用验证集验证模型,记录最后的分类准确率为此Hold-OutMethod下分类器的性能指标.此种方法的好处的处理简单,只需随机把原始数据分为两组即可,其实严格意义来说Hold-Out Method并不能算是CV,因为这种方法没有达到交叉的思想,由于是随机的将原始数据分组,所以最后验证集分类准确率的高低与原始数据的分组有很大的关系,所以这种方法得到的结果其实并不具有说服性.
 
2).K-fold Cross Validation(记为K-CV)
将原始数据分成K组(一般是均分),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,这样会得到K个模型,用这K个模型最终的验证集的分类准确率的平均数作为此K-CV下分类器的性能指标.K一般大于等于2,实际操作时一般从3开始取,只有在原始数据集合数据量小的时候才会尝试取2.K-CV可以有效的避免过学习以及欠学习状态的发生,最后得到的结果也比较具有说服性.
 
3).Leave-One-Out Cross Validation(记为LOO-CV)
如果设原始数据有N个样本,那么LOO-CV就是N-CV,即每个样本单独作为验证集,其余的N-1个样本作为训练集,所以LOO-CV会得到N个模型,用这N个模型最终的验证集的分类准确率的平均数作为此下LOO-CV分类器的性能指标.相比于前面的K-CV,LOO-CV有两个明显的优点:

a.每一回合中几乎所有的样本皆用于训练模型,因此最接近原始样本的分布,这样评估所得的结果比较可靠。

b.实验过程中没有随机因素会影响实验数据,确保实验过程是可以被复制的。
但LOO-CV的缺点则是计算成本高,因为需要建立的模型数量与原始数据样本数量相同,当原始数据样本数量相当多时,LOO-CV在实作上便有困难几乎就是不显示,除非每次训练分类器得到模型的速度很快,或是可以用并行化计算减少计算所需的时间.
 
 
 
 
如果你理解 k-fold cross validation的话,其实这个和它的意思是差不多的。k-fold,就是取整个样本的1/k作为预测样本,(k-1)/k作为训练样本。当用训练样本对数据作出模型后,再用预测样本来预测。
leave-one-out就是把n-1个样本作为训练集,剩下一个样本作为预测集。并且循环,使得每个样本都作为一次预测集,然后计算交叉验证的正确率。
 
http://blog.xuite.net/x5super/studyroom/61471385-%E4%B8%80%E7%AF%87%E5%BE%88%E6%A3%92%E7%9A%84%E6%B8%AC%E8%A9%A6%28%E5%9B%9E%E6%B8%AC%29%E6%8A%80%E8%A1%93%E6%96%87%E7%AB%A0
 
 

大数据在教育中的应用 part2笔记的更多相关文章

  1. 漫谈ELK在大数据运维中的应用

    漫谈ELK在大数据运维中的应用 圈子里关于大数据.云计算相关文章和讨论是越来越多,愈演愈烈.行业内企业也争前恐后,群雄逐鹿.而在大数据时代的运维挑站问题也就日渐突出,任重而道远了.众所周知,大数据平台 ...

  2. 大数据量表中,增加一个NOT NULL的新列

      这次,发布清洗列表功能,需要对数据库进行升级.MailingList表加个IfCleaning字段,所有的t_User*表加个IfCleaned字段.   脚本如下 对所有的t_User表执行 a ...

  3. 浅谈大数据神器Spark中的RDD

    1.究竟什么是RDD呢? 有人可能会回答是:Resilient Distributed Dataset.没错,的确是如此.但是我们问这个实际上是想知道RDD到底是个什么东西?以及它到底能干嘛?好的,有 ...

  4. 大数据(5) - HDFS中的常用API操作

    一.安装java 二.IntelliJ IDEA(2018)安装和破解与初期配置 参考链接 1.进入官网下载IntelliJ IDEA https://www.jetbrains.com/idea/d ...

  5. [大数据相关] Hive中的全排序:order by,sort by, distribute by

    写mapreduce程序时,如果reduce个数>1,想要实现全排序需要控制好map的输出,详见Hadoop简单实现全排序. 现在学了hive,写sql大家都很熟悉,如果一个order by解决 ...

  6. 大数据和AI怎么与现代教育相结合?

    大数据和AI怎么与现代教育相结合? 比尔·盖茨曾预言,"5年以后,你将可以在网上免费获取世界上最好的课程,而且这些课程比任何一个单独大学提供的课程都要好." 现在看来,虽然并不是每 ...

  7. 第一章:大数据 の Linux 基础 [更新中]

    本课主题 Linux 休系结构图 Linux 系统启动的顺序 Linux 查看内存和 CPU 指令 环境变量加载顺序 Linux 内存结构 Linux 休系结构图 Linux 大致分为三个层次,第一层 ...

  8. PayPal高级工程总监:读完这100篇论文 就能成大数据高手(附论文下载)

    100 open source Big Data architecture papers for data professionals. 读完这100篇论文 就能成大数据高手 作者 白宁超 2016年 ...

  9. PayPal 高级工程总监:读完这 100 篇文献,就能成大数据高手

    原文地址 开源(Open Source)对大数据影响,有二:一方面,在大数据技术变革之路上,开源在众人之力和众人之智推动下,摧枯拉朽,吐故纳新,扮演着非常重要的推动作用:另一方面,开源也给大数据技术构 ...

随机推荐

  1. FASTREPORT COM/ActiveX报表如何保存到C++项目中?

    可以的. VC++ : ... IStream * pStream;CreateStreamOnHGlobal(NULL, true, &pStream);pStream->AddRef ...

  2. 跨越VLAN

    跨越VLAN VLAN(Virtual Local Area Network),是基于以太网交互技术构建的虚拟网络,既可以将同一物理网络划分为多个VLAN,也可以跨越物理网络障碍,将不同于子网中的用户 ...

  3. Hadoop mapreduce执行过程涉及api

    资源的申请,分配过程略过,从开始执行开始. mapper阶段: 首先调用默认的PathFilter进行文件过滤,确定哪些输入文件是需要的哪些是不需要的,然后调用inputFormat的getSplit ...

  4. Postfix 邮件服务 - 基础服务

    环境 centos 6.5 x64 测试 IP:172.16.2.18 1.关闭selinux # cat /etc/selinux/config SELINUX=disabled 2.配置 ipta ...

  5. 串行动画组QSequentialAnimationGroup

    按顺序执行动画 该类就是用来按照动画添加顺序来执行动画的.我们只用实例化该类,然后通过调用addAnimation()或者insertAnimation()方法把各个动画添加进去就可以了 import ...

  6. Python之Eclipse环境下安装与配置

    奔着对python的好奇,今天又是周末,欲小试Python.那么首先避不开的问题就是python的环境搭建.而我之前已经在学习Java的过程中安装了Eclipse,不想再安装更多的IDE了,就那Ecl ...

  7. Java中ArrayList循环遍历并删除元素的陷阱

    ava中的ArrayList循环遍历并且删除元素时经常不小心掉坑里,昨天又碰到了,感觉有必要单独写篇文章记一下. 先写个测试代码: import java.util.ArrayList; public ...

  8. eMMC基础技术8:操作模式1-boot mode

    1.前言 eMMC总线操作包含: boot mode device identification mode interrupt mode data transfer mode 本文主要描述boot m ...

  9. java并发编程系列二:原子操作/CAS

    什么是原子操作 不可被中断的一个或者一系列操作 实现原子操作的方式 Java可以通过锁和循环CAS的方式实现原子操作 CAS( Compare And Swap )  为什么要有CAS? Compar ...

  10. C# 实现UDP打洞通信(一)

    最近研究了一下网络打洞的相关技术,TCP的方式据说可行性不高,各种困难,因此决定采用UDP(UDP是什么就不解释了)的方式. 原理: 我们都知道局域网内的主机想要访问外网的服务器是比较容易的,比如浏览 ...