matplotlib 学习总结
matplotlib 学习总结
作者:csj
更新时间:01.09
email:59888745@qq.com
说明:因内容较多,会不断更新 xxx学习总结;
回主目录:2017 年学习记录和总结
# matplotlib 及环境配置
# 数据图的组成结构,与 matplotlib 对应的名称
# 常见的数据绘图类型,与绘制方法
# 您可能需要以下的准备与先修知识:
# Python开发环境及matplotlib工具包
# Python基础语法
# Python numpy 包使用 # 一幅数据图基本上包括如下结构:
# Data: 数据区,包括数据点、描绘形状
# Axis: 坐标轴,包括 X 轴、 Y 轴及其标签、刻度尺及其标签
# Title: 标题,数据图的描述
# Legend: 图例,区分图中包含的多种曲线或不同分类的数据
# 其他的还有图形文本 (Text)、注解 (Annotate)等其他描述 # 导入 matplotlib 包相关工具包
# 准备数据,numpy 数组存储
# 绘制原始曲线
# 配置标题、坐标轴、刻度、图例
# 添加文字说明、注解
# 显示、保存绘图结果
import matplotlib.pyplot as plt
import numpy as np x = np.arange(0,10,0.2)
y = np.sin(x) plt.rcParams['figure.figsize']=(12,6)# x zhou lenght =12,y zhou lenght ==6
plt.plot(x,y,color='#0F5E0F',linestyle='--',marker='*',label=r'$ s=sin{x} $')
ax = plt.subplot(111)
#配置标题、坐标轴、刻度、图例,hide top,right border line
ax.spines['right'].set_color('none') # delete the right borther line
ax.spines['top'].set_color('none') #delete the top borter line
#ax.xaxis.set_ticks_position('bottom')
#ax.spines['bottom'].set_position(('data', 0)) #move the x zhou to 0.00 # 移动左边边框线,相当于移动 y 轴
#ax.yaxis.set_ticks_position('left')
#ax.spines['left'].set_position(('data', 0))
#plt.title(r'$the \ function \ figure \ of \ cos(), \ sin() \ and \ sqrt()$', fontsize=19)
plt.title(r' this is title name ',fontsize=19) plt.xlabel(r'x', fontsize=18, labelpad=12)
plt.ylabel(r'y', fontsize=18, labelpad=12.5)
#设置文字描述、注解
plt.text(0.8, 0.9, r'$x \in [0.0, \ 10.0]$', color='k', fontsize=15)
plt.text(0.8, 0.8, r'$y \in [-1.0, \ 4.0]$', color='k', fontsize=15)
#设置图例及位置
plt.legend(['cos(x)'],loc='upper right')
# 特殊点添加注解
plt.scatter([8,],[np.sqrt(8),], 50, color ='m') # 使用散点图放大当前点
plt.annotate(r'$2\sqrt{2}$', xy=(8, np.sqrt(8)), xytext=(8.5, 2.2), fontsize=16, color='#090909', arrowprops=dict(arrowstyle='->', connectionstyle='arc3, rad=0.1', color='#090909'))
# 显示网格线
#plt.grid(True)
plt.show()
2 常用图形
曲线图:
matplotlib.pyplot.plot(data)
x =np.arange(-5,5,0.1)
y = x**2
plt.plot(x,y)
plt.show()
灰度图:
matplotlib.pyplot.hist(data)
x =[1,2,3,4,5,6,7,8]
plt.hist(x,bins=16)
plt.show()
散点图:
# x =[1,2,3,4,5,6,7,8]
# y =[1,2,3,4,5,6,7,8]
matplotlib.pyplot.scatter(data)
x=np.random.normal(size=100)
y=np.random.normal(size=100)
plt.scatter(x,y)
plt.show()
箱式图:
x =[1,2,3,4,5,6,7,8]
plt.boxplot(x)
plt.show()
remark:
ax.scatter(x_data, y_data, color='r', alpha = 0.75 )
# 柱状图
plt.bar(x,y)
# 定义绘制柱状图的函数
def barplot(x_data, y_data, error_data, x_label, y_label, title):
_, ax = plt.subplots()
# 柱状图
ax.bar(x_data, y_data, color = '#539caf', align = 'center')
# 绘制方差
# ls='none'去掉bar之间的连线
ax.errorbar(x_data, y_data, yerr = error_data, color = '#297083', ls = 'none', lw = 5)
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)
# 绘图函数调用
barplot(x_data = mean_total_co_day.index.values
, y_data = mean_total_co_day['mean']
, error_data = mean_total_co_day['std']
, x_label = 'Day of week'
, y_label = 'Check outs'
, title = 'Total Check Outs By Day of Week (0 = Sunday)')
# 不同种类(species)鸢尾花萼片和花瓣的大小关系(分类散点子图),中文处理
plt.scatter(data['sepal_length'] , data['petal_length'], color='r', alpha=0.7)
plt.scatter(data['petal_width'], data['petal_width'], color='b', alpha=0.7)
plt.xlabel("x")
plt.ylabel("y")
plt.title("萼片与花瓣的比较".decode('utf-8'))
plt.legend(['萼片与花瓣长度比较'.decode('utf-8'), '萼片与花瓣宽度比较'.decode('utf-8')], loc='upper left')
总结:
关联分析、数值比较:散点图、曲线图
分布分析:灰度图、密度图
涉及分类的分析:柱状图、箱式图
更全的参考
http://matplotlib.org/api/index.html
matplotlib 学习总结的更多相关文章
- Matplotlib学习笔记(二)
原 Matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .car ...
- Matplotlib学习笔记(一)
原 matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .ca ...
- Matplotlib学习---用matplotlib画箱线图(boxplot)
箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分 ...
- Matplotlib学习---matplotlib的一些基本用法
Matplotlib有两种接口,一种是matlab风格接口,一种是面向对象接口.在这里,统一使用面向对象接口.因为面向对象接口可以适应更复杂的场景,在多图之间进行切换将变得非常容易. 首先导入matp ...
- Matplotlib学习---用matplotlib画直方图/密度图(histogram, density plot)
直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://d ...
- Matplotlib 学习笔记
注:该文是上了开智学堂数据科学基础班的课后做的笔记,主讲人是肖凯老师. 数据绘图 数据可视化的原则 为什么要做数据可视化? 为什么要做数据可视化?因为可视化后获取信息的效率高.为什么可视化后获取信息的 ...
- python学习(三):matplotlib学习
前言:matplotlib是一个python的第三方库,里面的pyplot可以用来作图.下面来学习一下如何使用它的资源. 一.使用前 首先在python中使用任何第三方库时,都必须先将其引入.即: i ...
- Python:2D画图库matplotlib学习总结
本文为学习笔记----总结!大部分为demo.一部分为学习中遇到的问题总结.包含怎么设置标签为中文等.matlab博大精深.须要用的时候再继续吧. Pyplot tutorial Demo地址为:点击 ...
- matplotlib学习之绘图基础
matplotlib:http://www.cnblogs.com/jasonhaven/p/7609059.html 1.基本图形 散点图:显示两组数据的值,每个点的坐标位置由变量的值决定,头一组不 ...
随机推荐
- convert时间格式转换参数表
本文摘自:http://blog.csdn.net/zc19820620/article/details/2043829 CONVERT (data_type[(length)], expressio ...
- jQuery UI练习
jQuery UI 是建立在 jQuery JavaScript 库上的一组用户界面交互.特效.小部件及主题.无论您是创建高度交互的 Web 应用程序还是仅仅向窗体控件添加一个日期选择器,jQuery ...
- Eclipse 安装Maven以及Eclipse配置Maven
安装Maven 1 下载 Downloading Apache Maven 3.5.0 选择 2 解压 3 配置环境变量 新建变量名:MAVEN_HOME 变量值:D:\SoftwareInstal ...
- oracle字符串载取及判断是否包含指定字符串
oracle 截取字符(substr),检索字符位置(instr) case when then else end语句使用 收藏 常用函数:substr和instr1.SUBSTR(string,st ...
- Python进制转换(二进制/八进制/十进制/十六进制)
Python 进制转换 二进制 八进制 十进制 十六进制 作者:方倍工作室 地址:http://www.cnblogs.com/txw1958/p/python3-scale.html 全局定义 ba ...
- [Python] 糗事百科文本数据的抓取
[Python] 糗事百科文本数据的抓取 源码 https://github.com/YouXianMing/QiuShiBaiKeText import sqlite3 import time im ...
- Java全栈程序员之03:Ubuntu下安装idea
JetBrains的产品我曾经用过很长一段时间,它们是resharper和dotcover.VS号称宇宙最强IDE,直到它遇到了resharper,我们才知道,原来vs可以更好.DotCover是一个 ...
- .Net Standard HttpClient封装Htt请求常用操作整理
一.常用Http操作 1.Get请求,有参数,无参数 2.Post 请求,有参数,无参数 3.文件简单下载 修改NetHelper中Post请求方法Bug:请求编码默认UTF8,字符串内存流读取后这是 ...
- C++11 多线程编程 使用lambda创建std::thread (生产/消费者模式)
要写个tcp server / client的博客,想着先写个c++11多线程程序.方便后面写博客使用. 目前c++11中写多线程已经很方便了,不用再像之前的pthread_create,c++11中 ...
- 【OpenCV学习】计算两幅图像的重叠区域
问题描述:已知两幅图像Image1和Image2,计算出两幅图像的重叠区域,并在Image1和Image2标识出重叠区域. 算法思想: 若两幅图像存在重叠区域,则进行图像匹配后,会得到一张完整的全景图 ...