NumPy for MATLAB users
http://mathesaurus.sourceforge.net/matlab-numpy.html
Help
MATLAB/Octave | Python | Description |
---|---|---|
doc help -i % browse with Info |
help() | Browse help interactively |
help help or doc doc | help | Help on using help |
help plot | help(plot) or ?plot | Help for a function |
help splines or doc splines | help(pylab) | Help for a toolbox/library package |
demo | Demonstration examples |
Searching available documentation
MATLAB/Octave | Python | Description |
---|---|---|
lookfor plot | Search help files | |
help | help(); modules [Numeric] | List available packages |
which plot | help(plot) | Locate functions |
Using interactively
MATLAB/Octave | Python | Description |
---|---|---|
octave -q | ipython -pylab | Start session |
TAB or M-? | TAB | Auto completion |
foo(.m) | execfile('foo.py') or run foo.py | Run code from file |
history | hist -n | Command history |
diary on [..] diary off | Save command history | |
exit or quit | CTRL-D CTRL-Z # windows sys.exit() |
End session |
Operators
MATLAB/Octave | Python | Description |
---|---|---|
help - | Help on operator syntax |
Arithmetic operators
MATLAB/Octave | Python | Description |
---|---|---|
a=1; b=2; | a=1; b=1 | Assignment; defining a number |
a + b | a + b or add(a,b) | Addition |
a - b | a - b or subtract(a,b) | Subtraction |
a * b | a * b or multiply(a,b) | Multiplication |
a / b | a / b or divide(a,b) | Division |
a .^ b | a ** b power(a,b) pow(a,b) |
Power, $a^b$ |
rem(a,b) | a % b remainder(a,b) fmod(a,b) |
Remainder |
a+=1 | a+=b or add(a,b,a) | In place operation to save array creation overhead |
factorial(a) | Factorial, $n!$ |
Relational operators
MATLAB/Octave | Python | Description |
---|---|---|
a == b | a == b or equal(a,b) | Equal |
a < b | a < b or less(a,b) | Less than |
a > b | a > b or greater(a,b) | Greater than |
a <= b | a <= b or less_equal(a,b) | Less than or equal |
a >= b | a >= b or greater_equal(a,b) | Greater than or equal |
a ~= b | a != b or not_equal(a,b) | Not Equal |
Logical operators
MATLAB/Octave | Python | Description |
---|---|---|
a && b | a and b | Short-circuit logical AND |
a || b | a or b | Short-circuit logical OR |
a & b or and(a,b) | logical_and(a,b) or a and b | Element-wise logical AND |
a | b or or(a,b) | logical_or(a,b) or a or b | Element-wise logical OR |
xor(a, b) | logical_xor(a,b) | Logical EXCLUSIVE OR |
~a or not(a) ~a or !a |
logical_not(a) or not a | Logical NOT |
any(a) | True if any element is nonzero | |
all(a) | True if all elements are nonzero |
root and logarithm
MATLAB/Octave | Python | Description |
---|---|---|
sqrt(a) | math.sqrt(a) | Square root |
log(a) | math.log(a) | Logarithm, base $e$ (natural) |
log10(a) | math.log10(a) | Logarithm, base 10 |
log2(a) | math.log(a, 2) | Logarithm, base 2 (binary) |
exp(a) | math.exp(a) | Exponential function |
Round off
MATLAB/Octave | Python | Description |
---|---|---|
round(a) | around(a) or math.round(a) | Round |
ceil(a) | ceil(a) | Round up |
floor(a) | floor(a) | Round down |
fix(a) | fix(a) | Round towards zero |
Mathematical constants
MATLAB/Octave | Python | Description |
---|---|---|
pi | math.pi | $\pi=3.141592$ |
exp(1) | math.e or math.exp(1) | $e=2.718281$ |
Missing values; IEEE-754 floating point status flags
MATLAB/Octave | Python | Description |
---|---|---|
NaN | nan | Not a Number |
Inf | inf | Infinity, $\infty$ |
plus_inf | Infinity, $+\infty$ | |
minus_inf | Infinity, $-\infty$ | |
plus_zero | Plus zero, $+0$ | |
minus_zero | Minus zero, $-0$ |
Complex numbers
MATLAB/Octave | Python | Description |
---|---|---|
i | z = 1j | Imaginary unit |
z = 3+4i | z = 3+4j or z = complex(3,4) | A complex number, $3+4i$ |
abs(z) | abs(3+4j) | Absolute value (modulus) |
real(z) | z.real | Real part |
imag(z) | z.imag | Imaginary part |
arg(z) | Argument | |
conj(z) | z.conj(); z.conjugate() | Complex conjugate |
Trigonometry
MATLAB/Octave | Python | Description |
---|---|---|
atan(a,b) | atan2(b,a) | Arctangent, $\arctan(b/a)$ |
hypot(x,y) | Hypotenus; Euclidean distance |
Generate random numbers
MATLAB/Octave | Python | Description |
---|---|---|
rand(1,10) | random.random((10,)) random.uniform((10,)) |
Uniform distribution |
2+5*rand(1,10) | random.uniform(2,7,(10,)) | Uniform: Numbers between 2 and 7 |
rand(6) | random.uniform(0,1,(6,6)) | Uniform: 6,6 array |
randn(1,10) | random.standard_normal((10,)) | Normal distribution |
Vectors
MATLAB/Octave | Python | Description |
---|---|---|
a=[2 3 4 5]; | a=array([2,3,4,5]) | Row vector, $1 \times n$-matrix |
adash=[2 3 4 5]'; | array([2,3,4,5])[:,NewAxis] array([2,3,4,5]).reshape(-1,1) r_[1:10,'c'] |
Column vector, $m \times 1$-matrix |
Sequences
MATLAB/Octave | Python | Description |
---|---|---|
1:10 | arange(1,11, dtype=Float) range(1,11) |
1,2,3, ... ,10 |
0:9 | arange(10.) | 0.0,1.0,2.0, ... ,9.0 |
1:3:10 | arange(1,11,3) | 1,4,7,10 |
10:-1:1 | arange(10,0,-1) | 10,9,8, ... ,1 |
10:-3:1 | arange(10,0,-3) | 10,7,4,1 |
linspace(1,10,7) | linspace(1,10,7) | Linearly spaced vector of n=7 points |
reverse(a) | a[::-1] or | Reverse |
a(:) = 3 | a.fill(3), a[:] = 3 | Set all values to same scalar value |
Concatenation (vectors)
MATLAB/Octave | Python | Description |
---|---|---|
[a a] | concatenate((a,a)) | Concatenate two vectors |
[1:4 a] | concatenate((range(1,5),a), axis=1) |
Repeating
MATLAB/Octave | Python | Description |
---|---|---|
[a a] | concatenate((a,a)) | 1 2 3, 1 2 3 |
a.repeat(3) or | 1 1 1, 2 2 2, 3 3 3 | |
a.repeat(a) or | 1, 2 2, 3 3 3 |
Miss those elements out
MATLAB/Octave | Python | Description |
---|---|---|
a(2:end) | a[1:] | miss the first element |
a([1:9]) | miss the tenth element | |
a(end) | a[-1] | last element |
a(end-1:end) | a[-2:] | last two elements |
Maximum and minimum
MATLAB/Octave | Python | Description |
---|---|---|
max(a,b) | maximum(a,b) | pairwise max |
max([a b]) | concatenate((a,b)).max() | max of all values in two vectors |
[v,i] = max(a) | v,i = a.max(0),a.argmax(0) |
Vector multiplication
MATLAB/Octave | Python | Description |
---|---|---|
a.*a | a*a | Multiply two vectors |
dot(u,v) | dot(u,v) | Vector dot product, $u \cdot v$ |
Matrices
MATLAB/Octave | Python | Description |
---|---|---|
a = [2 3;4 5] | a = array([[2,3],[4,5]]) | Define a matrix |
Concatenation (matrices); rbind and cbind
MATLAB/Octave | Python | Description |
---|---|---|
[a ; b] | concatenate((a,b), axis=0) vstack((a,b)) |
Bind rows |
[a , b] | concatenate((a,b), axis=1) hstack((a,b)) |
Bind columns |
concatenate((a,b), axis=2) dstack((a,b)) |
Bind slices (three-way arrays) | |
[a(:), b(:)] | concatenate((a,b), axis=None) | Concatenate matrices into one vector |
[1:4 ; 1:4] | concatenate((r_[1:5],r_[1:5])).reshape(2,-1) vstack((r_[1:5],r_[1:5])) |
Bind rows (from vectors) |
[1:4 ; 1:4]' | Bind columns (from vectors) |
Array creation
MATLAB/Octave | Python | Description |
---|---|---|
zeros(3,5) | zeros((3,5),Float) | 0 filled array |
zeros((3,5)) | 0 filled array of integers | |
ones(3,5) | ones((3,5),Float) | 1 filled array |
ones(3,5)*9 | Any number filled array | |
eye(3) | identity(3) | Identity matrix |
diag([4 5 6]) | diag((4,5,6)) | Diagonal |
magic(3) | Magic squares; Lo Shu | |
a = empty((3,3)) | Empty array |
Reshape and flatten matrices
MATLAB/Octave | Python | Description |
---|---|---|
reshape(1:6,3,2)'; | arange(1,7).reshape(2,-1) a.setshape(2,3) |
Reshaping (rows first) |
reshape(1:6,2,3); | arange(1,7).reshape(-1,2).transpose() | Reshaping (columns first) |
a'(:) | a.flatten() or | Flatten to vector (by rows, like comics) |
a(:) | a.flatten(1) | Flatten to vector (by columns) |
vech(a) | Flatten upper triangle (by columns) |
Shared data (slicing)
MATLAB/Octave | Python | Description |
---|---|---|
b = a | b = a.copy() | Copy of a |
Indexing and accessing elements (Python: slicing)
MATLAB/Octave | Python | Description |
---|---|---|
a = [ 11 12 13 14 ... 21 22 23 24 ... 31 32 33 34 ] |
a = array([[ 11, 12, 13, 14 ], [ 21, 22, 23, 24 ], [ 31, 32, 33, 34 ]]) |
Input is a 3,4 array |
a(2,3) | a[1,2] | Element 2,3 (row,col) |
a(1,:) | a[0,] | First row |
a(:,1) | a[:,0] | First column |
a([1 3],[1 4]); | a.take([0,2]).take([0,3], axis=1) | Array as indices |
a(2:end,:) | a[1:,] | All, except first row |
a(end-1:end,:) | a[-2:,] | Last two rows |
a(1:2:end,:) | a[::2,:] | Strides: Every other row |
a[...,2] | Third in last dimension (axis) | |
a(:,[1 3 4]) | a.take([0,2,3],axis=1) | Remove one column |
a.diagonal(offset=0) | Diagonal |
Assignment
MATLAB/Octave | Python | Description |
---|---|---|
a(:,1) = 99 | a[:,0] = 99 | |
a(:,1) = [99 98 97]' | a[:,0] = array([99,98,97]) | |
a(a>90) = 90; | (a>90).choose(a,90) a.clip(min=None, max=90) |
Clipping: Replace all elements over 90 |
a.clip(min=2, max=5) | Clip upper and lower values |
Transpose and inverse
MATLAB/Octave | Python | Description |
---|---|---|
a' | a.conj().transpose() | Transpose |
a.' or transpose(a) | a.transpose() | Non-conjugate transpose |
det(a) | linalg.det(a) or | Determinant |
inv(a) | linalg.inv(a) or | Inverse |
pinv(a) | linalg.pinv(a) | Pseudo-inverse |
norm(a) | norm(a) | Norms |
eig(a) | linalg.eig(a)[0] | Eigenvalues |
svd(a) | linalg.svd(a) | Singular values |
chol(a) | linalg.cholesky(a) | Cholesky factorization |
[v,l] = eig(a) | linalg.eig(a)[1] | Eigenvectors |
rank(a) | rank(a) | Rank |
Sum
MATLAB/Octave | Python | Description |
---|---|---|
sum(a) | a.sum(axis=0) | Sum of each column |
sum(a') | a.sum(axis=1) | Sum of each row |
sum(sum(a)) | a.sum() | Sum of all elements |
a.trace(offset=0) | Sum along diagonal | |
cumsum(a) | a.cumsum(axis=0) | Cumulative sum (columns) |
Sorting
MATLAB/Octave | Python | Description |
---|---|---|
a = [ 4 3 2 ; 2 8 6 ; 1 4 7 ] | a = array([[4,3,2],[2,8,6],[1,4,7]]) | Example data |
sort(a(:)) | a.ravel().sort() or | Flat and sorted |
sort(a) | a.sort(axis=0) or msort(a) | Sort each column |
sort(a')' | a.sort(axis=1) | Sort each row |
sortrows(a,1) | a[a[:,0].argsort(),] | Sort rows (by first row) |
a.ravel().argsort() | Sort, return indices | |
a.argsort(axis=0) | Sort each column, return indices | |
a.argsort(axis=1) | Sort each row, return indices |
Maximum and minimum
MATLAB/Octave | Python | Description |
---|---|---|
max(a) | a.max(0) or amax(a [,axis=0]) | max in each column |
max(a') | a.max(1) or amax(a, axis=1) | max in each row |
max(max(a)) | a.max() or | max in array |
[v i] = max(a) | return indices, i | |
max(b,c) | maximum(b,c) | pairwise max |
cummax(a) | ||
a.ptp(); a.ptp(0) | max-to-min range |
Matrix manipulation
MATLAB/Octave | Python | Description |
---|---|---|
fliplr(a) | fliplr(a) or a[:,::-1] | Flip left-right |
flipud(a) | flipud(a) or a[::-1,] | Flip up-down |
rot90(a) | rot90(a) | Rotate 90 degrees |
repmat(a,2,3) kron(ones(2,3),a) |
kron(ones((2,3)),a) | Repeat matrix: [ a a a ; a a a ] |
triu(a) | triu(a) | Triangular, upper |
tril(a) | tril(a) | Triangular, lower |
Equivalents to "size"
MATLAB/Octave | Python | Description |
---|---|---|
size(a) | a.shape or a.getshape() | Matrix dimensions |
size(a,2) or length(a) | a.shape[1] or size(a, axis=1) | Number of columns |
length(a(:)) | a.size or size(a[, axis=None]) | Number of elements |
ndims(a) | a.ndim | Number of dimensions |
a.nbytes | Number of bytes used in memory |
Matrix- and elementwise- multiplication
MATLAB/Octave | Python | Description |
---|---|---|
a .* b | a * b or multiply(a,b) | Elementwise operations |
a * b | matrixmultiply(a,b) | Matrix product (dot product) |
inner(a,b) or | Inner matrix vector multiplication $a\cdot b'$ | |
outer(a,b) or | Outer product | |
kron(a,b) | kron(a,b) | Kronecker product |
a / b | Matrix division, $b{\cdot}a^{-1}$ | |
a \ b | linalg.solve(a,b) | Left matrix division, $b^{-1}{\cdot}a$ \newline (solve linear equations) |
vdot(a,b) | Vector dot product | |
cross(a,b) | Cross product |
Find; conditional indexing
MATLAB/Octave | Python | Description |
---|---|---|
find(a) | a.ravel().nonzero() | Non-zero elements, indices |
[i j] = find(a) | (i,j) = a.nonzero() (i,j) = where(a!=0) |
Non-zero elements, array indices |
[i j v] = find(a) | v = a.compress((a!=0).flat) v = extract(a!=0,a) |
Vector of non-zero values |
find(a>5.5) | (a>5.5).nonzero() | Condition, indices |
a.compress((a>5.5).flat) | Return values | |
a .* (a>5.5) | where(a>5.5,0,a) or a * (a>5.5) | Zero out elements above 5.5 |
a.put(2,indices) | Replace values |
Multi-way arrays
MATLAB/Octave | Python | Description |
---|---|---|
a = cat(3, [1 2; 1 2],[3 4; 3 4]); | a = array([[[1,2],[1,2]], [[3,4],[3,4]]]) | Define a 3-way array |
a(1,:,:) | a[0,...] |
File input and output
MATLAB/Octave | Python | Description |
---|---|---|
f = load('data.txt') | f = fromfile("data.txt") f = load("data.txt") |
Reading from a file (2d) |
f = load('data.txt') | f = load("data.txt") | Reading from a file (2d) |
x = dlmread('data.csv', ';') | f = load('data.csv', delimiter=';') | Reading fram a CSV file (2d) |
save -ascii data.txt f | save('data.csv', f, fmt='%.6f', delimiter=';') | Writing to a file (2d) |
f.tofile(file='data.csv', format='%.6f', sep=';') | Writing to a file (1d) | |
f = fromfile(file='data.csv', sep=';') | Reading from a file (1d) |
Plotting
Basic x-y plots
MATLAB/Octave | Python | Description |
---|---|---|
plot(a) | plot(a) | 1d line plot |
plot(x(:,1),x(:,2),'o') | plot(x[:,0],x[:,1],'o') | 2d scatter plot |
plot(x1,y1, x2,y2) | plot(x1,y1,'bo', x2,y2,'go') | Two graphs in one plot |
plot(x1,y1) hold on plot(x2,y2) |
plot(x1,y1,'o') plot(x2,y2,'o') show() # as normal |
Overplotting: Add new plots to current |
subplot(211) | subplot(211) | subplots |
plot(x,y,'ro-') | plot(x,y,'ro-') | Plotting symbols and color |
Axes and titles
MATLAB/Octave | Python | Description |
---|---|---|
grid on | grid() | Turn on grid lines |
axis equal axis('equal') replot |
figure(figsize=(6,6)) | 1:1 aspect ratio |
axis([ 0 10 0 5 ]) | axis([ 0, 10, 0, 5 ]) | Set axes manually |
title('title') xlabel('x-axis') ylabel('y-axis') |
Axis labels and titles | |
text(2,25,'hello') | Insert text |
Log plots
MATLAB/Octave | Python | Description |
---|---|---|
semilogy(a) | semilogy(a) | logarithmic y-axis |
semilogx(a) | semilogx(a) | logarithmic x-axis |
loglog(a) | loglog(a) | logarithmic x and y axes |
Filled plots and bar plots
MATLAB/Octave | Python | Description |
---|---|---|
fill(t,s,'b', t,c,'g') % fill has a bug? |
fill(t,s,'b', t,c,'g', alpha=0.2) | Filled plot |
Functions
MATLAB/Octave | Python | Description |
---|---|---|
f = inline('sin(x/3) - cos(x/5)') | Defining functions | |
ezplot(f,[0,40]) fplot('sin(x/3) - cos(x/5)',[0,40]) % no ezplot |
x = arrayrange(0,40,.5) y = sin(x/3) - cos(x/5) plot(x,y, 'o') |
Plot a function for given range |
Polar plots
MATLAB/Octave | Python | Description |
---|---|---|
theta = 0:.001:2*pi; r = sin(2*theta); |
theta = arange(0,2*pi,0.001) r = sin(2*theta) |
|
polar(theta, rho) | polar(theta, rho) |
Histogram plots
MATLAB/Octave | Python | Description |
---|---|---|
hist(randn(1000,1)) | ||
hist(randn(1000,1), -4:4) | ||
plot(sort(a)) |
3d data
Contour and image plots
MATLAB/Octave | Python | Description |
---|---|---|
contour(z) | levels, colls = contour(Z, V, origin='lower', extent=(-3,3,-3,3)) clabel(colls, levels, inline=1, fmt='%1.1f', fontsize=10) |
Contour plot |
contourf(z); colormap(gray) | contourf(Z, V, cmap=cm.gray, origin='lower', extent=(-3,3,-3,3)) |
Filled contour plot |
image(z) colormap(gray) |
im = imshow(Z, interpolation='bilinear', origin='lower', extent=(-3,3,-3,3)) |
Plot image data |
# imshow() and contour() as above | Image with contours | |
quiver() | quiver() | Direction field vectors |
Perspective plots of surfaces over the x-y plane
MATLAB/Octave | Python | Description |
---|---|---|
n=-2:.1:2; [x,y] = meshgrid(n,n); z=x.*exp(-x.^2-y.^2); |
n=arrayrange(-2,2,.1) [x,y] = meshgrid(n,n) z = x*power(math.e,-x**2-y**2) |
|
mesh(z) | Mesh plot | |
surf(x,y,z) or surfl(x,y,z) % no surfl() |
Surface plot |
Scatter (cloud) plots
MATLAB/Octave | Python | Description |
---|---|---|
plot3(x,y,z,'k+') | 3d scatter plot |
Save plot to a graphics file
MATLAB/Octave | Python | Description |
---|---|---|
plot(1:10) print -depsc2 foo.eps gset output "foo.eps" gset terminal postscript eps plot(1:10) |
savefig('foo.eps') | PostScript |
savefig('foo.pdf') | ||
savefig('foo.svg') | SVG (vector graphics for www) | |
print -dpng foo.png | savefig('foo.png') | PNG (raster graphics) |
Data analysis
Set membership operators
MATLAB/Octave | Python | Description |
---|---|---|
a = [ 1 2 2 5 2 ]; b = [ 2 3 4 ]; |
a = array([1,2,2,5,2]) b = array([2,3,4]) a = set([1,2,2,5,2]) b = set([2,3,4]) |
Create sets |
unique(a) | unique1d(a) unique(a) set(a) |
Set unique |
union(a,b) | union1d(a,b) a.union(b) |
Set union |
intersect(a,b) | intersect1d(a) a.intersection(b) |
Set intersection |
setdiff(a,b) | setdiff1d(a,b) a.difference(b) |
Set difference |
setxor(a,b) | setxor1d(a,b) a.symmetric_difference(b) |
Set exclusion |
ismember(2,a) | 2 in a setmember1d(2,a) contains(a,2) |
True for set member |
Statistics
MATLAB/Octave | Python | Description |
---|---|---|
mean(a) | a.mean(axis=0) mean(a [,axis=0]) |
Average |
median(a) | median(a) or median(a [,axis=0]) | Median |
std(a) | a.std(axis=0) or std(a [,axis=0]) | Standard deviation |
var(a) | a.var(axis=0) or var(a) | Variance |
corr(x,y) | correlate(x,y) or corrcoef(x,y) | Correlation coefficient |
cov(x,y) | cov(x,y) | Covariance |
Interpolation and regression
MATLAB/Octave | Python | Description |
---|---|---|
z = polyval(polyfit(x,y,1),x) plot(x,y,'o', x,z ,'-') |
(a,b) = polyfit(x,y,1) plot(x,y,'o', x,a*x+b,'-') |
Straight line fit |
a = x\y | linalg.lstsq(x,y) | Linear least squares $y = ax + b$ |
polyfit(x,y,3) | polyfit(x,y,3) | Polynomial fit |
Non-linear methods
Polynomials, root finding
MATLAB/Octave | Python | Description |
---|---|---|
poly() | Polynomial | |
roots([1 -1 -1]) | roots() | Find zeros of polynomial |
f = inline('1/x - (x-1)') fzero(f,1) |
Find a zero near $x = 1$ | |
solve('1/x = x-1') | Solve symbolic equations | |
polyval([1 2 1 2],1:10) | polyval(array([1,2,1,2]),arange(1,11)) | Evaluate polynomial |
Differential equations
MATLAB/Octave | Python | Description |
---|---|---|
diff(a) | diff(x, n=1, axis=0) | Discrete difference function and approximate derivative |
Solve differential equations |
Fourier analysis
MATLAB/Octave | Python | Description |
---|---|---|
fft(a) | fft(a) or | Fast fourier transform |
ifft(a) | ifft(a) or | Inverse fourier transform |
convolve(x,y) | Linear convolution |
Symbolic algebra; calculus
MATLAB/Octave | Python | Description |
---|---|---|
factor() | Factorization |
Programming
MATLAB/Octave | Python | Description |
---|---|---|
.m | .py | Script file extension |
% % or # |
# | Comment symbol (rest of line) |
% must be in MATLABPATH % must be in LOADPATH |
from pylab import * | Import library functions |
string='a=234'; eval(string) |
string="a=234" eval(string) |
Eval |
Loops
MATLAB/Octave | Python | Description |
---|---|---|
for i=1:5; disp(i); end | for i in range(1,6): print(i) | for-statement |
for i=1:5 disp(i) disp(i*2) end |
for i in range(1,6): print(i) print(i*2) |
Multiline for statements |
Conditionals
MATLAB/Octave | Python | Description |
---|---|---|
if 1>0 a=100; end | if 1>0: a=100 | if-statement |
if 1>0 a=100; else a=0; end | if-else-statement |
Debugging
MATLAB/Octave | Python | Description |
---|---|---|
ans | Most recent evaluated expression | |
whos or who | List variables loaded into memory | |
clear x or clear [all] | Clear variable $x$ from memory | |
disp(a) | print a |
Working directory and OS
MATLAB/Octave | Python | Description |
---|---|---|
dir or ls | os.listdir(".") | List files in directory |
what | grep.grep("*.py") | List script files in directory |
pwd | os.getcwd() | Displays the current working directory |
cd foo | os.chdir('foo') | Change working directory |
!notepad system("notepad") |
os.system('notepad') os.popen('notepad') |
Invoke a System Command |
Time-stamp: "2007-11-09T16:46:36 vidar"
©2006 Vidar Bronken Gundersen, /mathesaurus.sf.net
Permission is granted to copy, distribute and/or modify this document as long as the above attribution is retained.
NumPy for MATLAB users的更多相关文章
- numpy opencv matlab eigen SVD结果对比
参考 https://zhuanlan.zhihu.com/p/26306568 https://byjiang.com/2017/11/18/SVD/ http://www.bluebit.gr/m ...
- numpy和matlab计算协方差矩阵的不同(matlab是标准的,numpy相当于转置后计算)
matlab是标准的,numpy相当于转置后计算 >> x = [2,0,-1.4;2.2,0.2,-1.5;2.4,0.1,-1;1.9,0,-1.2] x = 2.0000 0 ...
- python numpy笔记:给matlab使用者
利用Numpy,python可以进行有效的科学计算.本文给过去常用matlab,现在正学习Numpy的人. 在进行矩阵运算等操作时,使用array还是matrix?? 简短的回答,更多的时候使用arr ...
- Python3.1-标准库之Numpy
这系列用来介绍Python的标准库的支持Numpy部分.资料来自http://wiki.scipy.org/Tentative_NumPy_Tutorial,页面有许多链接,这里是直接翻译,所以会无法 ...
- numpy教程:排序、搜索和计数
http://blog.csdn.net/pipisorry/article/details/51822775 numpy排序.搜索和计数函数和方法.(重新整合过的) ],, , ], [, , ]] ...
- numpy教程
[转]CS231n课程笔记翻译:Python Numpy教程 原文链接:https://zhuanlan.zhihu.com/p/20878530 译者注:本文智能单元首发,翻译自斯坦福CS231n课 ...
- python 与 matlab 混编
用于 Python 的 MATLAB 引擎 API 快速入门 安装用于 Python 的 MATLAB 引擎 API Matlab的官方文档中介绍了 Matlab 与其余编程语言之间的引擎接口,其中包 ...
- CS231n课程笔记翻译1:Python Numpy教程
译者注:本文智能单元首发,翻译自斯坦福CS231n课程笔记Python Numpy Tutorial,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客翻译完成,Flood Sung ...
- 转:Numpy教程
因为用到theano写函数的时候饱受数据结构困扰 于是上网找了一篇numpy教程(theano的数据类型是基于numpy的) 原文排版更好,阅读体验更佳: http://phddreamer.blog ...
随机推荐
- Selenium 页面自动化测试 面试 问题汇总
1. 专业技术 在学习完Selenium的大部分接口或者方法之后,你可能会去面试自动化测试,主要是Selenium的自动化测试.下面这些问题总结,可能会对你有所帮助. 什么是Selenium? S ...
- format格式化函数
注意:列表索引设置参数,‘0’是必须的.
- Centos7默认自带了Python2.7版本,但是因为项目需要使用Python3.x,这里提供一种比较快捷方便的安装方式
安装必要工具 yum-utils: $ sudo yum install yum-utils 使用yum-builddep为Python3构建环境,安装缺失的软件依赖,使用下面的命令会自动处理.$ s ...
- 一个请求需要调用两个不同的数据库 添加DbContext
当请求进入application中的方法时 会开启一个工作单元 这里面调用不同的DbContext 会默认使用第一次调用的DbContext 需要手动开启工作单元来隔离两个不同的DbContex ...
- 浅谈 Java JPDA
前言 程序员在坊间有非常多有趣的故事,其中就有这么一则:”这个在我的电脑上是好的,没问题的呀,诺,你看咯,一定是你打开姿势不正确,浏览器版本不正确,操作系统不统一等,总之不是我代码问题(傲娇)”.看到 ...
- 雷林鹏分享:查看 XML 文件
查看 XML 文件 在所有主流的浏览器中,均能够查看原始的 XML 文件. 不要指望 XML 文件会直接显示为 HTML 页面. 查看 XML 文件 - Tove Jani Reminder Don' ...
- 雷林鹏分享:C# 环境
C# 环境 在这一章中,我们将讨论创建 C# 编程所需的工具.我们已经提到 C# 是 .Net 框架的一部分,且用于编写 .Net 应用程序.因此,在讨论运行 C# 程序的可用工具之前,让我们先了解一 ...
- java,数字,字符,字符串之间的转化
首先,先看一道编程题目: A除以B (20) 时间限制 1000 ms 内存限制 32768 KB 代码长度限制 100 KB 判断程序 Standard (来自 小小) 题目描述 本题要求计算A/B ...
- linux+vs2013编译静态库和动态库
Linux下创建与使用静态库 Linux静态库命名规则 Linux静态库命名规范,必须是"lib[your_library_name].a":lib为前缀,中间是静态库名,扩展名为 ...
- Spring Batch 背景
在开源项目及其相关社区把大部分注意力集中在基于 web 和 SOA 基于消息机制的框架中时,基于 Java 的批处理框架却无人问津,尽管在企业 T 环境中一直都有这种批处理的需求.但因为缺乏一个标准的 ...