奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
      这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。

原图及数学公式取自:

http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。

脚本代码:

[ScriptLines]
u=-a*i + j*j - k*k + a*c
v=i*(j - b*k) + d
w=k+i*(b*j + k)
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=0.100000
b=4.000000
c=14.000000
d=0.080000
i=1.000000
j=1.000000
k=1.000000
t=0.001000

混沌图像:

奇怪吸引子---LorenaMod1的更多相关文章

  1. 奇怪吸引子---YuWang

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  2. 奇怪吸引子---WimolBanlue

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  3. 奇怪吸引子---WangSun

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  4. 奇怪吸引子---TreeScrollUnifiedChaoticSystem

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  5. 奇怪吸引子---Thomas

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  6. 奇怪吸引子---ShimizuMorioka

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  7. 奇怪吸引子---Sakarya

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  8. 奇怪吸引子---Russler

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  9. 奇怪吸引子---Rucklidge

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

随机推荐

  1. CSS的vertical-align

    转载自https://blog.csdn.net/FE_dev/article/details/75948659 说明 vertical-align属性,是CSS属性中一个比较重要的属性,也是比较不好 ...

  2. 【ES】学习1-入门使用

    参考资料: https://elasticsearch.cn/book/elasticsearch_definitive_guide_2.x/_search_lite.htm 1.查询es数据的方法 ...

  3. web----ssl通信

    ssl通信 https://www.cnblogs.com/zhengah/p/5007753.html

  4. Codeforces 5C Longest Regular Bracket Sequence(DP+括号匹配)

    题目链接:http://codeforces.com/problemset/problem/5/C 题目大意:给出一串字符串只有'('和')',求出符合括号匹配规则的最大字串长度及该长度的字串出现的次 ...

  5. python接口自动化测试八:更新Cookies、session保持会话

    s = requests.session() # 此方法只适用于网站是cookies这种,网站是token的没用 # 这样做的好处就是可以保存cookies并保持会话,不用每次都去获取.传参 Toke ...

  6. python包管理之Pip安装及使用-1

    Python有两个著名的包管理工具easy_install.py和pip.在Python2.7的安装包中,easy_install.py是默认安装的,而pip需要我们手动安装. pip可以运行在Uni ...

  7. pyinstaller将py文件转成exe格式

    首先要注意一下:打包python文件成exe格式这个过程只能在windows环境下运行 1. 直接在命令行用pip安装 pyinstaller pip install pyinstaller 2. 下 ...

  8. python全栈开发day46-BOM、位置信息、jQurey

    一.昨日内容回顾 1.DOM节点获取:三种方式 2.属性的设置: getAttirbute() setAttribute() .点设置,[]设置 3.节点的创建:   var oDiv = creat ...

  9. Codeforces 442C Artem and Array (看题解)

    Artem and Array 经过分析我们能发现, 如果对于一个a[ i ] <= a[ i + 1 ] && a[ i ] <= a[ i - 1 ]可以直接删掉. 最 ...

  10. POJ-1511 Invitation Cards (单源最短路+逆向)

    <题目链接> 题目大意: 有向图,求从起点1到每个点的最短路然后再回到起点1的最短路之和. 解题分析: 在求每个点到1点的最短路径时,如果仅仅只是遍历每个点,对它们每一个都进行一次最短路算 ...