题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

Input输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。Output输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。Sample Input

2 1
8 4
4 7

Sample Output

0
1
0 题解:威佐夫博弈 详细请看:https://baike.baidu.com/item/%E5%A8%81%E4%BD%90%E5%A4%AB%E5%8D%9A%E5%BC%88/19858256?fr=aladdin
威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k。
两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1.618...因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,b = aj + j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。
 #include <iostream>
#include <algorithm>
using namespace std;
int main()
{
std::ios::sync_with_stdio(false);
int n,m;
double k=(sqrt(5.0)+1.0)/2.0;
while(cin>>n>>m){
if(n<m) swap(n,m);
int d=n-m;
n=(int)d*k;
if(n==m) cout<<<<endl;
else cout<<<<endl;
}
return ;
}

HDU 1527 取石子游戏 (威佐夫博弈)的更多相关文章

  1. HDU 1527 取石子游戏(威佐夫博弈)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

  2. nim3取石子游戏 (威佐夫博弈)

    http://www.cnblogs.com/jackge/archive/2013/04/22/3034968.html 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有 ...

  3. 洛谷P2252 取石子游戏(威佐夫博弈)

    题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...

  4. hdu1527取石子游戏(威佐夫博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  5. P2252 取石子游戏 威佐夫博弈

    $ \color{#0066ff}{ 题目描述 }$ 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆 ...

  6. POJ 1067 取石子游戏 威佐夫博弈

    威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 我们用(ak,bk)(ak ≤ bk ,k= ...

  7. POJ1067 取石子游戏 威佐夫博弈 博弈论

    http://poj.org/problem?id=1067 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可 ...

  8. 题解报告:hdu 1527 取石子游戏(威佐夫博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石 ...

  9. HDU 1527 取石子游戏(威佐夫博弈)

    基础威佐夫博弈,判断奇异局势即可,判断方式为k为两数之差绝对值,(sqrt(5) + 1) / 2 * k若等于两数小者则为奇异局势,也就是必败态. #include<stdio.h> # ...

随机推荐

  1. 前端 HTML标签属性

    HTML标签可以设置属性,如下: <div id="i1">这是一个div标签</div> <p class='p1 p2 p3'>这是一个段落 ...

  2. 20180409 Code First

    many people use DB First,Today I see Code First.  这部分,百度上面有更多详细的资料,虽然不明白Migrations内部的机制,但是还是可以记录一下 打 ...

  3. golang 中的 sizeof 以及 golang中的 union

    golang 中的 sizeof: 1: int(unsafe.Sizeof(uint32(0))) 2: int(reflect.TypeOf(uint32(0)).Size()) golang中的 ...

  4. vue 验证码倒计时

    //html <div class="input-div" v-show="formData.phone"> <input type=&quo ...

  5. ngx_lua 模块详细讲解(基于openresty)

    ngx_lua模块的原理: 1.每个worker(工作进程)创建一个Lua VM,worker内所有协程共享VM:2.将Nginx I/O原语封装后注入 Lua VM,允许Lua代码直接访问:3.每个 ...

  6. 关于SimpleDateFormat时间转换总是显示1970年的问题

    今天遇到了一个奇怪的问题, long time = 1488606363; Date date = new Date(time); java.text.SimpleDateFormat sDateFo ...

  7. Python的原型开发带来的关于Mock的思考

    Python非常受欢迎,主要原因之一它包包多,能让你快速实现一个功能,并且很方便运行并看到效果,因此,它非常适合做原型开发. 什么是原型开发? 原型开发就是实现一个简单版本的开发. 在使用其他高级语言 ...

  8. windows下使用sed和tee命令

    最近需要在winowds slave上设置构建app和sdk,至于如何在windows slave上构建c/c++代码生成sdk(dll,lib之类)和apk(exe文件),请参考我的另外一篇博客,即 ...

  9. Golang 引用库中含有初始化代码时如何引用

    简单点说吧,要在引用库前加'_'符号 给出示例 //foo.go // /usr/local/go/pkg/src/foo/foo.go package foo import "fmt&qu ...

  10. ShakaApktool 用法

    usage: ShakaApktool b[uild] [options] <app_path> -df,--default-framework 使用默认的框架资源文件. -f 跳过已编译 ...