Perceptual Generative Adversarial Networks for Small Object Detection

2017-07-11  19:47:46   CVPR 2017

  This paper use GAN to handle the issue of small object detection which is a very hard problem in general object detection. As shown in the following figures, small object and large objects usually shown different representations from the feature level.   

  Thus, it is possbile to use Percetual GAN to super-resolution of feature maps of small objects to obtain better detection performance.

  It consists of two subnetworks, i.e., a generator network and a perceptual discriminator network. Specifically, the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations.

  

  Different from normal GAN, this network also introduce a new perceptual loss tailored from the detection purpose. That is to say, the discriminator not only need to deal with the adversarial loss, but also need to justify the detection accuray benefiting from the generated super-resolved features with a perceptual loss.

  The proposed contributions:

  (1) We are the first to successfully apply GAN-alike models to solve the challenging small-scale object detection problems.

   (2) We introduce a new conditional generator model that learns the additive residual representation between large and small objects, instead of generating the complete representations as before.

   (3) We introduce a new perceptual discriminator that provides more comprehensive supervision beneficial for detections, instead of barely differentiating fake and real.

   (4) Successful applications on traffic sign detection and pedestrian detection have been achieved with the state-of-the-art performance.

  Figure 2. Training procedure of object detection network based on the Perceptual GAN.

  

  As shown in Figure 2, the generator network aims to generate super-resoved representation for the small object.

  The discriminator includes two branches, i.e.

    1. the adversarial branch  for differentiating between the generated superresolved representation.

    2. the perception branch for justifying the detection accurcy benefiting from the generation representation. 


  ==>> Dicriminative Network Architecture:

  The D network need to justify the dection accuracy benefiting from the generated super-resovled feature.

  Given the adversarial loss $L_{dis_a}$ and the perceptual loss $L_{dis_p}$ , a final loss function Ldis can be produced as weighted sum of both individual loss components. Given weighting parameters w1 and w2, we define Ldis = w1 × Ldis_a + w2 × Ldis_p to encourage the generator network to generate super-resolved representation with high detection accuracy. Here we set both w1 and w2 to be one. 

    


  


  

  

Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection的更多相关文章

  1. 【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017

    Perceptual Generative Adversarial Networks for Small Object Detection 2017CVPR 新鲜出炉的paper,这是针对small ...

  2. Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...

  3. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  4. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  5. Generative Adversarial Networks overview(2)

    Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...

  6. Generative Adversarial Networks overview(1)

    Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...

  7. GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds

    GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds 2019 ...

  8. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks 2019-06-01 09:52:4 ...

  9. 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...

随机推荐

  1. Yii2 数据缓存/片段缓存/页面缓存/Http缓存

  2. hdu5439 二分

    题意 初始给了 1 2 两个数 第二步 因为第2个数是2 所以  在序列后面放上2个2 包括他自己之前有的 序列变成 1 2 2 第三步 因为第3个数是2 所以  在序列后面放上2个3 就变成了 1 ...

  3. css 扩大点击范围

    业务场景:比如某个按钮大小已经固定了,但是需求点击按钮周边就可以触发点击事件. 设置一下before属性里面的height,width就是设置你要点击的范围. rem是css3中新增加的一个单位属性( ...

  4. 20155228 获取技能的成功经验和关于C语言学习的调查

    内容提要 你有什么技能比大多人(超过90%以上)更好?针对这个技能的获取你有什么成功的经验?与老师博客中的学习经验有什么共通之处? 有关C语言学习的调查 你是怎么学习C语言的?(作业,实验,教材,其他 ...

  5. 前端 dojo

    http://dojotoolkit.org/documentation/tutorials/1.10/hello_dojo/ html在线编辑器 国内 http://runjs.cn 国外 http ...

  6. MVC中的Ajax与增删改查(二)

    上一篇记录的是前台操作,下面写一下后台 ,本来自认为是没有必要做补充,毕竟思路啥的都有,实际上在做删除操作的时候,折腾了一天,还是自己太嫩,逻辑不够严谨,这里作下记录. 关于表结构这里再作下说明: ① ...

  7. kali 创建快捷方式的方法

    Kali应用程序快捷方式分析 kali默认使用Gnome桌面环境,所以给kali添加应用程序快捷方式就是给Gnome添加应用快捷方式. 在/usr/share/applications目录下有很多的. ...

  8. CentOS下Yum的$releasever和$basearch的取值

    CentOS下Yum源配置文件中如CentOS-Base.repo的$releasever和$basearch的取值 $releasever的值,这个表示当前系统的发行版本,可以通过如下命令查看: r ...

  9. Win7 Python开发环境搭建

    1.  下载Anaconda并安装 地址: https://www.anaconda.com/download/ Anaconda包括Python基础包与一系列科学计算包,安装后不用再单独安装Pyth ...

  10. Firefox 功能笔记

    1.复制标签 说明:复制标签功能即新开一个与当前页一样的标签页,这个功能在Chrome中点击标签右键复制即可,但是在firefox中没有 Firefox中实现:Ctrl+拖动标签页