Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary

2017.03.08

Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly.

There are several ways in which patch pairs can be processed by the network and how the information sharing can take place in this case. This paper studied 3 types about the comparion network:

  1. 2-channel    2. Siamese   3. Pseu-siamese Network


1. Siamese Network :

  This is a chassical network which first proposed by Lecun. This network has two networks which denote two inputs (the compared image pairs). Each network has its own convolution layer, ReLU and max-pooling layer. It is also worthy to notice that: the two networks are share same weights.

2. Pseudo-siamese Network :

  the same definition as siamese network, but the two branches do not share weights. This is the most difference between siamese and pseudo-siamese network.

3. 2-channel network : 

  Just combine two input patches 1 and 2 together, and input it into normal convolutional network. The output of the network is 1 value. This kind of network has greater flexibnility and fast to train. But, it is expensive when testing, because it need all combinations of patches.



  

  

Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary的更多相关文章

  1. 论文笔记 — Learning to Compare Image Patches via Convolutional Neural Networks

    论文: 引入论文中的一句话来说明对比图像patches的重要性,“Comparing patches across images is probably one of the most fundame ...

  2. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  3. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  4. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

    Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...

  5. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  6. Convolutional Neural Networks from deep learning (assignment 1 from week 1)

    Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welc ...

  7. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  8. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

  9. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

随机推荐

  1. hdu3879 最大权闭合回路

    题意: 有n个基站可以建立,然后m个团体会使用这些基站进行工作,地i个团体会适应Ai Bi 这两个基站, 如果建成收益Ci,  第j个基站花费Pj,求如何建立使得收益最大, 将每个团体看以一个点,然后 ...

  2. linux 安装 Python

    一. 打开终端,输入:wget https://www.python.org/ftp/python/3.5.0/Python-3.5.0b4.tgz 下载完毕后 输入解压命令:tar –zxvf Py ...

  3. Spark学习之路 (九)SparkCore的调优之数据倾斜调优

    摘抄自:https://tech.meituan.com/spark-tuning-pro.html 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Sp ...

  4. 蒙特卡洛(Monte Carlo)法求定积分

    https://blog.csdn.net/baimafujinji/article/details/53869358

  5. python selenium设置chrome的下载路径

    python可以通过ChromeOptions设置chrome参数,如下载路径等,代码如下(python 3.6.7): #-*-coding=utf-8-*- from selenium impor ...

  6. canvas绘图,html5 k线图,股票行情图

    canvas绘图,html5 k线图,股票行情图 canvas跟其他标签一样,也可以通过css来定义样式.但这里需要注意的是:canvas的默认宽高为300px * 150px,在css中为canva ...

  7. Python+OpenCV图像处理(九)—— 模板匹配

    百度百科:模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题.它是图像处理中最基本.最常用的匹配方法.模板匹配具有自身的局限性, ...

  8. 相关Linux命令

    #若服务不小心开启但是想关闭时,可以使用这个 命令:adstrtal.sh apps/apps(脚本  数据库用户名/密码) 若想启动命令:adstrtal.sh apps/apps ———————— ...

  9. Python实现京东自动登录

    配置好webdriver,用的是Chrome的 import cv2 import time import numpy as np from selenium import webdriver fro ...

  10. 通过经纬度获取所属城市信息-php

    测试经纬度信息,37.863036,113.598909.通过地图查询,所在城市为:阳泉. <?php class test{ public static $test_key = 'dfgfdg ...