Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary

2017.03.08

Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly.

There are several ways in which patch pairs can be processed by the network and how the information sharing can take place in this case. This paper studied 3 types about the comparion network:

  1. 2-channel    2. Siamese   3. Pseu-siamese Network


1. Siamese Network :

  This is a chassical network which first proposed by Lecun. This network has two networks which denote two inputs (the compared image pairs). Each network has its own convolution layer, ReLU and max-pooling layer. It is also worthy to notice that: the two networks are share same weights.

2. Pseudo-siamese Network :

  the same definition as siamese network, but the two branches do not share weights. This is the most difference between siamese and pseudo-siamese network.

3. 2-channel network : 

  Just combine two input patches 1 and 2 together, and input it into normal convolutional network. The output of the network is 1 value. This kind of network has greater flexibnility and fast to train. But, it is expensive when testing, because it need all combinations of patches.



  

  

Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary的更多相关文章

  1. 论文笔记 — Learning to Compare Image Patches via Convolutional Neural Networks

    论文: 引入论文中的一句话来说明对比图像patches的重要性,“Comparing patches across images is probably one of the most fundame ...

  2. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  3. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  4. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

    Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...

  5. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  6. Convolutional Neural Networks from deep learning (assignment 1 from week 1)

    Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welc ...

  7. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  8. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

  9. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

随机推荐

  1. KindEditor echarts

    var editor; KindEditor.ready(function (K) { editor = K.create('textarea[name="content"]', ...

  2. IOS 开发体验测试问题

    1.键盘收起体验 a. 文本键盘会收起,但是表情包.添加视频的键盘不会收起: b. 在会话场景中,同时进行一个点击输入框,一个向下滑,输入框中的聚焦的竖直细线不会消失:

  3. 【2017-02-28】C# 冒泡排序

    冒泡排序 重复地走访过要排序的数列,一次比较两个元素的大小,如果他们的顺序错误就把他们交换过来 通过两个For循环嵌套来实现 思路——以从小到大为例 第一个for循环抽取第一个数和第二个数进行比较,如 ...

  4. 【2017-2-24】C#循环嵌套,跳转语句,迭代穷举,异常语句,while循环

    循环嵌套 在一个循环体语句中包含另一个循环语句: 99乘法表 ; i <= ; i++) { ; j <= i; j++) { Console.Write(i+"x"+ ...

  5. Spark学习之路 (五)Spark伪分布式安装

    一.JDK的安装 JDK使用root用户安装 1.1 上传安装包并解压 [root@hadoop1 soft]# tar -zxvf jdk-8u73-linux-x64.tar.gz -C /usr ...

  6. Axis2之异步调用

    本章主要介绍axis2接口的异步调用方式. 一般情况下,我们使用同步方法(invokeBlocking)调用axis2接口,如果被调用的WebService方法长时间不返回,客户端将一直被阻塞,直到该 ...

  7. Hive和sparksql中的dayofweek

    dayofweek在hive2.2.0开始支持 ,低版本的hive没有提供原生的dayofweek函数,有时需要用到的时候不甚方便.其实低版本的sparksql和hive中可用以下方式实现dayofw ...

  8. css 初级进阶

    摘自:https://www.jianshu.com/p/dcc40ccc9841 CSS中级 Class和ID选择器 CSS初级教程中我们可以使用HTML标签选择器定义样式. 同样你也可以使用Cla ...

  9. 【javascript】对原型对象、原型链的理解

    原型对象,原型链这些知识属于基础类知识.但是平时开发过程中也很少用到. 看网上的意思,原型链用于es5开发场景下的继承.es6有了类语法糖之后,就自带继承了. 通过理解,个人画了一张原型链解构的关系图 ...

  10. Oracle之表的相关操作

    #添加字段 格式: alter table table_name add column_name datatype; 例子: alter table userinfo ); desc userinfo ...