Character Encoding

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1141    Accepted Submission(s): 433

Problem Description
In computer science, a character is a letter, a digit, a punctuation mark or some other similar symbol. Since computers can only process numbers, number codes are used to represent characters, which is known as character encoding. A character encoding system establishes a bijection between the elements of an alphabet of a certain size n and integers from 0 to n−1. Some well known character encoding systems include American Standard Code for Information Interchange (ASCII), which has an alphabet size 128, and the extended ASCII, which has an alphabet size 256.

For example, in ASCII encoding system, the word wdy is encoded as [119, 100, 121], while jsw is encoded as [106, 115, 119]. It can be noticed that both 119+100+121=340 and 106+115+119=340, thus the sum of the encoded numbers of the two words are equal. In fact, there are in all 903 such words of length 3 in an encoding system of alphabet size 128 (in this example, ASCII). The problem is as follows: given an encoding system of alphabet size n where each character is encoded as a number between 0 and n−1 inclusive, how many different words of length m are there, such that the sum of the encoded numbers of all characters is equal to k?

Since the answer may be large, you only need to output it modulo 998244353.

 
Input
The first line of input is a single integer T (1≤T≤400), the number of test cases.

Each test case includes a line of three integers n,m,k (1≤n,m≤105,0≤k≤105), denoting the size of the alphabet of the encoding system, the length of the word, and the required sum of the encoded numbers of all characters, respectively.

It is guaranteed that the sum of n, the sum of m and the sum of k don't exceed 5×106, respectively.

 
Output
For each test case, display the answer modulo 998244353 in a single line.
 
Sample Input
4
2 3 3
2 3 4
3 3 3
128 3 340
 
Sample Output
1
0
7
903
 
Source
   用[0,n)之间的数,填充m个有序位置使得m个位置的数的和是k的不同的方案个数。
  比赛时想到了是放球问题,但是容斥真的不会写,,dp也没调好,自闭了。
  这个问题等价于将k个小球(无差别)放入m个桶中,桶不能为空的方案个数,利用挡板法就是 :k+m个小球有k+m-1个间隙,挑出m-1个间隙插入隔板分成m块对应m个桶,再让每一块的个数减一就是实际放入的个数,这显然是等价的,方案个数就是  C(m-1,k+m-1)。
  但是有个问题是每个桶中的小球不可以大于等于n,因为[0,n)的限制,所以这个方案个数中有一部分是不合法的状态。利用容斥定理减去这些状态 f(i,j)表示包含j号桶在内至少有i个桶中的球数大于等于n的方案个数,不难得出 g(i)=SUM{ f(i,j) }=C(i,m)*C(m-1,k+m-1-i*n) , 然后对g(i)奇加偶减容斥一波。。。
  

 #include<bits/stdc++.h>
using namespace std;
#define LL long long
LL mod=;
LL inv[]={,},jc[]={,},jc_n[]={,};
void init(){
for(int i=;i<=;++i){
jc[i]=jc[i-]*i%mod;
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
jc_n[i]=jc_n[i-]*inv[i]%mod;
}
}
LL C(LL r,LL n){
if(r>n) return ;
return jc[n]*jc_n[r]%mod*jc_n[n-r]%mod;
}
int main()
{
init();
int t;
LL n,m,k;
cin>>t;
while(t--){
scanf("%lld%lld%lld",&n,&m,&k);
LL ans=C(m-,k+m-);
for(LL i=;i<=m;++i){
LL res=C(i,m)*C(m-,m+k--i*n)%mod;
if(i%==) ans=(ans-res+mod)%mod;
else ans=(ans+res)%mod;
}
printf("%lld\n",ans);
}
return ;
}

hdu-6397-容斥的更多相关文章

  1. HDU 4135 容斥

    问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...

  2. HDU 2841 容斥 或 反演

    $n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...

  3. HDU 1695 容斥

    又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...

  4. HDU 4059 容斥初步练习

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  5. hdu 1220 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  6. Co-prime HDU - 4135_容斥计数

    Code: #include<cstdio> #include<cstring> #include<cmath> #include<iostream> ...

  7. How many integers can you find HDU - 1796_容斥计数

    Code: #include<cstdio> using namespace std; typedef long long ll; const int R=13; ll a[R]; ll ...

  8. HDU 6397 Character Encoding (组合数学 + 容斥)

    题意: 析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式. 其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x ...

  9. 多校 HDU 6397 Character Encoding (容斥)

    题意:在0~n-1个数里选m个数和为k,数字可以重复选: 如果是在m个xi>0的情况下就相当于是将k个球分割成m块,那么很明显就是隔板法插空,不能为0的条件限制下一共k-1个位置可以选择插入隔板 ...

  10. HDU 6397(2018多校第8场1001) Character Encoding 容斥

    听了杜教的直播后知道了怎么做,有两种方法,一种构造函数(现在太菜了,听不懂,以后再补),一种容斥原理. 知识补充1:若x1,x2,.....xn均大于等于0,则x1+x2+...+xn=k的方案数是C ...

随机推荐

  1. (zhuan) 自然语言处理中的Attention Model:是什么及为什么

    自然语言处理中的Attention Model:是什么及为什么 2017-07-13 张俊林 待字闺中 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model( ...

  2. (转载)c# winform comboBox的常用一些属性和用法

    comboBox的常用一些属性和用法 [1].控件的默认值怎么设? this.comboBox1.Text = "请选择港口"; comboBox1.Items.Add(" ...

  3. EF Core In-Memory Database Provider

    原文链接 This can be useful for testing, although the SQLite provider in in-memory mode may be a more ap ...

  4. Sublime Text3 插件:DocBlockr与javascript注释规范

    原:http://www.ithao123.cn/content-719950.html 1.引子 在写代码的时候,尤其是写脚本,最需要注释了.目前脚本.样式的注释格式都有一个已经成文的约定规范(这些 ...

  5. 【NOIP 2015】Day2 T3 运输计划

    Problem Background 公元 \(2044\) 年,人类进入了宇宙纪元. Description 公元\(2044\) 年,人类进入了宇宙纪元. $L $国有 \(n\) 个星球,还有 ...

  6. JS字典 Dictionary类

    字典 Dictionary类 /*字典 Dictionary类*/ function Dictionary() { this.add = add; this.datastore = new Array ...

  7. 鼠标经过事件(onmouseover)

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  8. Spring Bean后置处理器

    本例子源于:W3CSchool,在此作记录 Bean 后置处理器允许在调用初始化方法前后对 Bean 进行额外的处理. BeanPostProcessor 接口定义回调方法,你可以实现该方法来提供自己 ...

  9. 关于前端SEO的一些常用知识总结

    Search English Optimization,搜索引擎优化,简称为SEO. (1)网站结构布局优化:尽量简单 1. 控制首页链接数量:首页链接不能太多,一旦太多,没有实质性的链接,很容易影响 ...

  10. 00-python语言介绍

    以下为摘录的python的介绍 Python是一种解释型语言.这就是说,与C语言和C的衍生语言不同,Python代码在运行之前不需要编译.其他解释型语言还包括PHP和Ruby. Python是动态类型 ...