题意:求\(\sum_{i_1=1}^m\sum_{i_2=1}^m...\sum_{i_n=1}^mgcd(i_1,i_2,...i_n)\)

题解:\(\sum_{d=1}^md\sum_{i_1=1}^m...\sum_{i_n=1}^m[(i_1,...i_n)==d]\)

\(=\sum_{d=1}^md\sum_{i_1=1}^{\lfloor \frac{m}{d} \rfloor}...\sum_{i_n=1}^{\lfloor \frac{m}{d} \rfloor}\sum_{t|i_1...t|i_n}^m\mu(t)\)

\(=\sum_{d=1}^md\sum_{t=1}^{\lfloor \frac{m}{d} \rfloor}t*{\lfloor \frac{m}{dt} \rfloor}^n\)

\(=\sum_{x=1}^m{\lfloor \frac{m}{x} \rfloor}^n\sum_{d|x}d*\mu(\frac{x}{d})\)

\(=\sum_{x=1}^m{\lfloor \frac{m}{x} \rfloor}^n*\phi(x)\)

杜教筛即可

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db long double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=10000000+10,maxn=200000+10,inf=0x3f3f3f3f; ull phi[N];
map<ull,ull>phii;
int prime[N],cnt;
bool mark[N];
void init()
{
phi[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=1;i<N;i++)phi[i]+=phi[i-1];
}
ull getphi(ull n)
{
if(n<N)return phi[n];
if(phii.find(n)!=phii.end())return phii[n];
ull ans;
if(n&1)ans=(n+1)/2*n;
else ans=n/2*(n+1);
for(ull i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ans-=(j-i+1)*getphi(n/i);
}
return phii[n]=ans;
}
inline ull qq(ull a,ull b){ull ans=1;while(b){if(b&1)ans=ans*a;a=a*a,b>>=1;}return ans;}
int main()
{
init();ull n,m;
scanf("%llu%llu",&n,&m);
ull ans=0;
for(ull i=1,j;i<=m;i=j+1)
{
j=m/(m/i);
ans+=(getphi(j)-getphi(i-1))*qq(m/i,n);
}
printf("%llu\n",ans);
return 0;
}
/******************** ********************/

loj#6491. zrq 学反演的更多相关文章

  1. LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)

    题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \ ...

  2. loj 6485 LJJ学二项式定理 —— 单位根反演

    题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...

  3. LOJ 6485 LJJ 学二项式定理——单位根反演

    题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...

  4. loj#6485. LJJ 学二项式定理(单位根反演)

    题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...

  5. [LOJ 6485]LJJ学二项式定理(单位根反演)

    也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...

  6. loj #6485. LJJ 学二项式定理 单位根反演

    新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...

  7. LOJ #6485 LJJ 学二项式定理

    QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次 ...

  8. LOJ 6485 LJJ学多项式

    前言 蒟蒻代码惨遭卡常,根本跑不过 前置芝士--单位根反演 单位根有这样的性质: \[ \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\rig ...

  9. loj #6485. LJJ 学二项式定理 (模板qwq)

    $ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...

随机推荐

  1. 【Spring Security】五、自定义过滤器

    在之前的几篇security教程中,资源和所对应的权限都是在xml中进行配置的,也就在http标签中配置intercept-url,试想要是配置的对象不多,那还好,但是平常实际开发中都往往是非常多的资 ...

  2. 网页中动态嵌入PDF文件/在线预览PDF内容https://www.cnblogs.com/xgyy/p/6119459.html

    #网页中动态嵌入PDF文件/在线预览PDF内容# 摘要:在web开发时我们有时会需要在线预览PDF内容,在线嵌入pdf文件: 问题1:如何网页中嵌入PDF: 在网页中: 常用的几种PDF预览代码片段如 ...

  3. Terminal run py文件

    cd Documents cd PythonCode python3 hello.py Text Editor: Atom Atom 可以用来写 python 脚本 (文件后缀名 .py). 但是不用 ...

  4. 用户管理--借鉴技术大牛ken

    本节内容 useradd userdel usermod groupadd groupdel 用户管理 为什么需要有用户? 1. linux是一个多用户系统 2. 权限管理(权限最小化) 用户:存在的 ...

  5. mysql行转列(多行转一列)

    场景 比如说一个订单对应多条数据,当状态(status)=1的时候,  数量(num)=25,当状态(status)=2的时候,  数量(num)=45,现在想用一条sql记录下不同状态对应的数量为多 ...

  6. 【Ruby】【遇到的问题】

    1 Error fetching https://gems.ruby-china.org/: certificate verify failed (https://gems.ruby-china.or ...

  7. Pandas中关于accessor的骚操作

    来自:Python那些事 pandas中accessor功能很强大,可以将它理解为一种属性接口,通过它获得额外的方法. 下面用代码和实例理解一下: import pandas as pd pd.Ser ...

  8. np.split()和np.array_split()

    来自:爱抠脚的coder np.split(): 该函数的参数要么按照数字划分(int),要么是按列表list划分:如果仅是输入一个int类型的数字,你的数组必须是均等的分割,否则会报错. np.ar ...

  9. Spark多种运行模式

    1.测试或实验性质的本地运行模式(单机) 该模式被称为Local[N]模式,是用单机的多个线程来模拟Spark分布式计算,通常用来验证开发出来的应用程序逻辑上是否有问题. 其中N代表可以使用N个线程, ...

  10. HTML 标记 1

    1. 文件结构 <html>                   ----------------------开始 <head>          -------------- ...