loj#6491. zrq 学反演
题意:求\(\sum_{i_1=1}^m\sum_{i_2=1}^m...\sum_{i_n=1}^mgcd(i_1,i_2,...i_n)\)
题解:\(\sum_{d=1}^md\sum_{i_1=1}^m...\sum_{i_n=1}^m[(i_1,...i_n)==d]\)
\(=\sum_{d=1}^md\sum_{i_1=1}^{\lfloor \frac{m}{d} \rfloor}...\sum_{i_n=1}^{\lfloor \frac{m}{d} \rfloor}\sum_{t|i_1...t|i_n}^m\mu(t)\)
\(=\sum_{d=1}^md\sum_{t=1}^{\lfloor \frac{m}{d} \rfloor}t*{\lfloor \frac{m}{dt} \rfloor}^n\)
\(=\sum_{x=1}^m{\lfloor \frac{m}{x} \rfloor}^n\sum_{d|x}d*\mu(\frac{x}{d})\)
\(=\sum_{x=1}^m{\lfloor \frac{m}{x} \rfloor}^n*\phi(x)\)
杜教筛即可
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db long double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=10000000+10,maxn=200000+10,inf=0x3f3f3f3f;
ull phi[N];
map<ull,ull>phii;
int prime[N],cnt;
bool mark[N];
void init()
{
phi[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=1;i<N;i++)phi[i]+=phi[i-1];
}
ull getphi(ull n)
{
if(n<N)return phi[n];
if(phii.find(n)!=phii.end())return phii[n];
ull ans;
if(n&1)ans=(n+1)/2*n;
else ans=n/2*(n+1);
for(ull i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ans-=(j-i+1)*getphi(n/i);
}
return phii[n]=ans;
}
inline ull qq(ull a,ull b){ull ans=1;while(b){if(b&1)ans=ans*a;a=a*a,b>>=1;}return ans;}
int main()
{
init();ull n,m;
scanf("%llu%llu",&n,&m);
ull ans=0;
for(ull i=1,j;i<=m;i=j+1)
{
j=m/(m/i);
ans+=(getphi(j)-getphi(i-1))*qq(m/i,n);
}
printf("%llu\n",ans);
return 0;
}
/********************
********************/
loj#6491. zrq 学反演的更多相关文章
- LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)
题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \ ...
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
- LOJ #6485 LJJ 学二项式定理
QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次 ...
- LOJ 6485 LJJ学多项式
前言 蒟蒻代码惨遭卡常,根本跑不过 前置芝士--单位根反演 单位根有这样的性质: \[ \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\rig ...
- loj #6485. LJJ 学二项式定理 (模板qwq)
$ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...
随机推荐
- hihoCoder week12 刷油漆
题目链接: https://hihocoder.com/contest/hiho12/problem/1 给出一棵树 每个节点的价值 求以1为根的树中,选取m个相联通的节点的最大价值和 #includ ...
- P5091 【模板】欧拉定理
思路 欧拉定理 当a与m互质时 \[ a^ {\phi (m)} \equiv 1 \ \ (mod\ m) \] 扩展欧拉定理 当a与m不互质且\(b\ge \phi(m)\)时, \[ a^b \ ...
- LOJ6284 数列分块入门8(分块)
两个锅 一个是sametag[i]==c 另一个是a[j]不要写成a[i] #include <cstdio> #include <cstring> #include < ...
- p3792 由乃与大母神原型和偶像崇拜(思维+线段树)
要求 1.修改x位置的值为y 2.查询区间l,r是否可以重排为值域上连续的一段 可以,很lxl 然后一开始思考合并区间,但是发现可以重排序,GG 然后想了特殊性质,比如求和,但是显然可以被叉 这时候我 ...
- Set和WeakSet数据结构
学习Set数据结构,注意这里不是数据类型,而是数据结构.它是ES6中新的东西,并且很有用处.Set的数据结构是以数组的形式构建的. Set的声明 let setArr = new Set(['js', ...
- 并发学习一、MPI初步认识
学习参考地址:https://www.jianshu.com/p/2fd31665e816 编程使用的vs2015 社区版本(个人感觉比Vc6.0的丑界面看起来舒服多了) MPI基本函数 MPI调用借 ...
- Docker之Swarm
Docker学习笔记 — Swarm搭建Docker集群 Swarm在schedule节点运行容器的时候,会根据指定的策略来计算最适合运行容器的节点,目前支持的策略有:spread, binpack, ...
- 《机器学习实战》之k-近邻算法(示例)
看了这本书的第一个算法—k-近邻算法,这个算法总体构造思想是比较简单的,在ACM当中的话就对应了kd树这种结构.首先需要给定训练集,然后给出测试数据,求出训练集中与测试数据最相近的k个数据,根据这k个 ...
- HDU 3526 Computer Assembling(最小割)
http://acm.hdu.edu.cn/showproblem.php?pid=3526 题意:有个屌丝要配置电脑,现在有n个配件需要购买,有两家公司出售这n个配件,还有m个条件是如果配件x和配件 ...
- QT使用QJson生成解析Json数据的方法
QT中使用json还是比较方便的,下面用例子直接说明 举例子之前首先推荐一个在线解析json格式的网站,具体格式用法如下图所示: 之后根据这个格式进行json数据解析. QT使用json需要包含的头文 ...