[Bayes] Latent Gaussian Process Models
比较难理解,通过做题来入门。
目的:简单的了解下相关概念。
基础
热身
目的:找x到y的映射关系。
假设:Q latent functions {fi}
fj 作为先验,跟x没什么直接关系,x只是作为承载超参数的载体。共有Q个,也就是有Q套超参数。
对于公式(4),x --> f --> (noise) --> y,大概就是这么个关系。
因为noise,当然y是iid。
由公式(3)可见,f也是iid。
一般而言,Q等于多分类的类别数量,P = 1即可(无需one-hot)。
开始
没看错,这么多符号,需要缕一缕,看不懂的概念可以参考以下链接。
Ref: Generic Inference in Latent Gaussian Process Models
(5) (6) (7) 其实跟(3)一回事:
既然多出了变量u,就分解出来看看:
带入已知条件,最后得:
高斯与高斯的联姻,结果还是高斯,就是在说这个。
这里主要是熟悉两个bound,对比下效果,以下是背景。
Inducing variables:ui
简单的理解为重要的某些点即可。
两个bound如下,可见后者计算复杂度更低。
[Bayes] Latent Gaussian Process Models的更多相关文章
- [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process
科班出身,贝叶斯护体,正本清源,故拿”九阳神功“自比,而非邪气十足的”九阴真经“: 现在看来,此前的八层功力都为这第九层作基础: 本系列第九篇,助/祝你早日hold住神功第九重,加入血统纯正的人工智能 ...
- [Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM
原理请观良心视频:机器学习课程 Expectation Maximisation Expectation-maximization is a well-founded statistical algo ...
- [OpenCV] Samples 15: Background Subtraction and Gaussian mixture models
不错的草稿.但进一步处理是必然的,也是难点所在. Extended: 固定摄像头,采用Gaussian mixture models对背景建模. OpenCV 中实现了两个版本的高斯混合背景/前景分割 ...
- 高斯过程(gaussian process)
Definition 1. A Gaussian Process is a collection of random variables, any finite number of which hav ...
- Gaussian Mixture Models and the EM algorithm汇总
Gaussian Mixture Models and the EM algorithm汇总 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 漫谈 ...
- Gaussian Process for Regression
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...
- 维纳过程(Wiener Process)与高斯过程(Gaussian Process)
维纳过程又叫布朗运动过程(Brownian motion): 1. 维纳过程 维纳过程 Wt 由如下性质所描述: W0=1, a.s.(a.s.,almost surely)
- 本人AI知识体系导航 - AI menu
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习 ...
- [Sklearn] Linear regression models to fit noisy data
Ref: [Link] sklearn各种回归和预测[各线性模型对噪声的反应] Ref: Linear Regression 实战[循序渐进思考过程] Ref: simple linear regre ...
随机推荐
- python 元组和字典中元素作为函数调用参数传递
模式1. def test1(*args): test3(*args) def test2(**kargs): test3(**kargs) def test3(a, b): print(a,b) ...
- Automatic overvoltage protection
In most cases the voltage that is induced in the coil can not exceed 6V, and it does not have risk t ...
- Linux系统管理员应该知道的journalctl知识
在Systemd出现之前,Linux系统及各应用的日志都是分别管理的,Systemd开始统一管理了所有Unit的启动日志,这样带来的好处就是可以只用一个 journalctl命令,查看所有内核和应用的 ...
- C++中extern “C”含义及extern、static关键字浅析
https://blog.csdn.net/bzhxuexi/article/details/31782445 1.引言 C++语言的创建初衷是“a better C”,但是这并不意味着C++中类似C ...
- webservice-整理
webservice-整理 RPC与WebService的区别:https://blog.csdn.net/defonds/article/details/71641634 http://www.di ...
- 使用JDBC在MySQL数据库中快速批量插入数据
使用JDBC连接MySQL数据库进行数据插入的时候,特别是大批量数据连续插入(10W+),如何提高效率呢? 在JDBC编程接口中Statement 有两个方法特别值得注意: void addBatch ...
- Hbase 命令小结
1.创建test,如果存在先删除 hbase(main)::> disable 'test' row(s) in 1.4250 seconds hbase(main)::> drop 't ...
- SpringBoot 2.x 整合ElasticSearch的demo
SpringBoot 2.x 整合ElasticSearch的demo 1.配置文件application.yml信息 # Tomcat server: tomcat: uri-encoding: U ...
- 使用ThreadLocal来实现一个本地缓存
大家应该知道,用户从发起请求,到服务器响应的这个过程中,在服务器中是在一个线程中的.如果我们吧查询出来的对象放到这个线程自己的缓存中,到用户请求结束时,把这些东西清理掉,应该是一个不错的cache方案 ...
- SpringCloud分布式事务TCC实现
可以参考 http://www.txlcn.org/ 的实现方式