比较难理解,通过做题来入门。

目的:简单的了解下相关概念。

基础

热身

目的:找x到y的映射关系。

假设:Q latent functions {fi}

fj 作为先验,跟x没什么直接关系,x只是作为承载超参数的载体。共有Q个,也就是有Q套超参数。

对于公式(4),x --> f --> (noise) --> y,大概就是这么个关系。

因为noise,当然y是iid。

由公式(3)可见,f也是iid。

一般而言,Q等于多分类的类别数量,P = 1即可(无需one-hot)。

开始

没看错,这么多符号,需要缕一缕,看不懂的概念可以参考以下链接。

Ref: Generic Inference in Latent Gaussian Process Models

(5) (6) (7) 其实跟(3)一回事:

既然多出了变量u,就分解出来看看:

带入已知条件,最后得:

高斯与高斯的联姻,结果还是高斯,就是在说这个。


这里主要是熟悉两个bound,对比下效果,以下是背景。

Inducing variables:ui

简单的理解为重要的某些点即可。

两个bound如下,可见后者计算复杂度更低。

[Bayes] Latent Gaussian Process Models的更多相关文章

  1. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process

    科班出身,贝叶斯护体,正本清源,故拿”九阳神功“自比,而非邪气十足的”九阴真经“: 现在看来,此前的八层功力都为这第九层作基础: 本系列第九篇,助/祝你早日hold住神功第九重,加入血统纯正的人工智能 ...

  2. [Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM

    原理请观良心视频:机器学习课程 Expectation Maximisation Expectation-maximization is a well-founded statistical algo ...

  3. [OpenCV] Samples 15: Background Subtraction and Gaussian mixture models

    不错的草稿.但进一步处理是必然的,也是难点所在. Extended: 固定摄像头,采用Gaussian mixture models对背景建模. OpenCV 中实现了两个版本的高斯混合背景/前景分割 ...

  4. 高斯过程(gaussian process)

    Definition 1. A Gaussian Process is a collection of random variables, any finite number of which hav ...

  5. Gaussian Mixture Models and the EM algorithm汇总

    Gaussian Mixture Models and the EM algorithm汇总 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 漫谈 ...

  6. Gaussian Process for Regression

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

  7. 维纳过程(Wiener Process)与高斯过程(Gaussian Process)

    维纳过程又叫布朗运动过程(Brownian motion): 1. 维纳过程 维纳过程 Wt 由如下性质所描述: W0=1, a.s.(a.s.,almost surely)

  8. 本人AI知识体系导航 - AI menu

    Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习 ...

  9. [Sklearn] Linear regression models to fit noisy data

    Ref: [Link] sklearn各种回归和预测[各线性模型对噪声的反应] Ref: Linear Regression 实战[循序渐进思考过程] Ref: simple linear regre ...

随机推荐

  1. python 元组和字典中元素作为函数调用参数传递

    模式1.  def test1(*args): test3(*args) def test2(**kargs): test3(**kargs) def test3(a, b): print(a,b) ...

  2. Automatic overvoltage protection

    In most cases the voltage that is induced in the coil can not exceed 6V, and it does not have risk t ...

  3. Linux系统管理员应该知道的journalctl知识

    在Systemd出现之前,Linux系统及各应用的日志都是分别管理的,Systemd开始统一管理了所有Unit的启动日志,这样带来的好处就是可以只用一个 journalctl命令,查看所有内核和应用的 ...

  4. C++中extern “C”含义及extern、static关键字浅析

    https://blog.csdn.net/bzhxuexi/article/details/31782445 1.引言 C++语言的创建初衷是“a better C”,但是这并不意味着C++中类似C ...

  5. webservice-整理

    webservice-整理 RPC与WebService的区别:https://blog.csdn.net/defonds/article/details/71641634 http://www.di ...

  6. 使用JDBC在MySQL数据库中快速批量插入数据

    使用JDBC连接MySQL数据库进行数据插入的时候,特别是大批量数据连续插入(10W+),如何提高效率呢? 在JDBC编程接口中Statement 有两个方法特别值得注意: void addBatch ...

  7. Hbase 命令小结

    1.创建test,如果存在先删除 hbase(main)::> disable 'test' row(s) in 1.4250 seconds hbase(main)::> drop 't ...

  8. SpringBoot 2.x 整合ElasticSearch的demo

    SpringBoot 2.x 整合ElasticSearch的demo 1.配置文件application.yml信息 # Tomcat server: tomcat: uri-encoding: U ...

  9. 使用ThreadLocal来实现一个本地缓存

    大家应该知道,用户从发起请求,到服务器响应的这个过程中,在服务器中是在一个线程中的.如果我们吧查询出来的对象放到这个线程自己的缓存中,到用户请求结束时,把这些东西清理掉,应该是一个不错的cache方案 ...

  10. SpringCloud分布式事务TCC实现

    可以参考 http://www.txlcn.org/ 的实现方式