aic bic mdl
https://blog.csdn.net/xianlingmao/article/details/7891277
https://blog.csdn.net/lfdanding/article/details/50732762
参考文章http://blog.csdn.net/lynnucas/article/details/47947943
转自:http://blog.csdn.net/jteng/article/details/40823675
此处模型选择我们只考虑模型参数数量,不涉及模型结构的选择。
很多参数估计问题均采用似然函数作为目标函数,当训练数据足够多时,可以不断提高模型精度,但是以提高模型复杂度为代价的,同时带来一个机器学习中非常普遍的问题——过拟合。所以,模型选择问题在模型复杂度与模型对数据集描述能力(即似然函数)之间寻求最佳平衡。
人们提出许多信息准则,通过加入模型复杂度的惩罚项来避免过拟合问题,此处我们介绍一下常用的两个模型选择方法——赤池信息准则(Akaike Information Criterion,AIC)和贝叶斯信息准则(Bayesian Information Criterion,BIC)。
AIC是衡量统计模型拟合优良性的一种标准,由日本统计学家赤池弘次在1974年提出,它建立在熵的概念上,提供了权衡估计模型复杂度和拟合数据优良性的标准。
通常情况下,AIC定义为:
其中k是模型参数个数,L是似然函数。从一组可供选择的模型中选择最佳模型时,通常选择AIC最小的模型。
当两个模型之间存在较大差异时,差异主要体现在似然函数项,当似然函数差异不显著时,上式第一项,即模型复杂度则起作用,从而参数个数少的模型是较好的选择。
一般而言,当模型复杂度提高(k增大)时,似然函数L也会增大,从而使AIC变小,但是k过大时,似然函数增速减缓,导致AIC增大,模型过于复杂容易造成过拟合现象。目标是选取AIC最小的模型,AIC不仅要提高模型拟合度(极大似然),而且引入了惩罚项,使模型参数尽可能少,有助于降低过拟合的可能性。
BIC(Bayesian InformationCriterion)贝叶斯信息准则与AIC相似,用于模型选择,1978年由Schwarz提出。训练模型时,增加参数数量,也就是增加模型复杂度,会增大似然函数,但是也会导致过拟合现象,针对该问题,AIC和BIC均引入了与模型参数个数相关的惩罚项,BIC的惩罚项比AIC的大,考虑了样本数量,样本数量过多时,可有效防止模型精度过高造成的模型复杂度过高。
其中,k为模型参数个数,n为样本数量,L为似然函数。kln(n)惩罚项在维数过大且训练样本数据相对较少的情况下,可以有效避免出现维度灾难现象。
经常地,对一堆数据进行建模的时候,特别是分类和回归模型,我们有很多的变量可供使用,选择不同的变量组合可以得到不同的模型,例如我们有5个变量,2的5次方,我们将有32个变量组合,可以训练出32个模型。但是哪个模型更加的好呢?目前常用有如下方法:
AIC=-2 ln(L) + 2 k 中文名字:赤池信息量 akaike information criterion
BIC=-2 ln(L) + ln(n)*k 中文名字:贝叶斯信息量 bayesian information criterion
HQ=-2 ln(L) + ln(ln(n))*k hannan-quinn criterion
其中L是在该模型下的最大似然,n是数据数量,k是模型的变量个数。
注意这些规则只是刻画了用某个模型之后相对“真实模型”的信息损失【因为不知道真正的模型是什么样子,所以训练得到的所有模型都只是真实模型的一个近似模型】,所以用这些规则不能说明某个模型的精确度,即三个模型A, B, C,在通过这些规则计算后,我们知道B模型是三个模型中最好的,但是不能保证B这个模型就能够很好地刻画数据,因为很有可能这三个模型都是非常糟糕的,B只是烂苹果中的相对好的苹果而已。
这些规则理论上是比较漂亮的,但是实际在模型选择中应用起来还是有些困难的,例如上面我们说了5个变量就有32个变量组合,如果是10个变量呢?2的10次方,我们不可能对所有这些模型进行一一验证AIC, BIC,HQ规则来选择模型,工作量太大。
aic bic mdl的更多相关文章
- PRML学习笔记第一章
[转] PRML笔记 - 1.1介绍 模式识别的目标 自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等. 模型选择和参数调节 类似的一族规律通常可以以一种模型的形式为表达,选择合适模型 ...
- Introduction to Writing Functions in R
目录 在R中编写函数 args(函数名) 创建一个函数的步骤 1.default args Passing arguments between functions Checking arguments ...
- 7 Types of Regression Techniques you should know!
翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...
- geoR文档翻译
说来惭愧,很久没有更新自己的博客了.期间个人生活经历了很多变故,心理上的打击尤甚.加之没有取得好的科研成果,痛定思痛,还是下苦功夫多多学习. 最近对比验证各种方法的插值精度,用到了R语言地统计学包,由 ...
- 【机器学习笔记之五】用ARIMA模型做需求预测用ARIMA模型做需求预测
本文结构: 时间序列分析? 什么是ARIMA? ARIMA数学模型? input,output 是什么? 怎么用?-代码实例 常见问题? 时间序列分析? 时间序列,就是按时间顺序排列的,随时间变化的数 ...
- python时间序列分析
题记:毕业一年多天天coding,好久没写paper了.在这动荡的日子里,也希望写点东西让自己静一静.恰好前段时间用python做了一点时间序列方面的东西,有一丁点心得体会想和大家 ...
- 时间序列算法(平稳时间序列模型,AR(p),MA(q),ARMA(p,q)模型和非平稳时间序列模型,ARIMA(p,d,q)模型)的模型以及需要的概念基础学习笔记梳理
在做很多与时间序列有关的预测时,比如股票预测,餐厅菜品销量预测时常常会用到时间序列算法,之前在学习这方面的知识时发现这方面的知识讲解不多,所以自己对时间序列算法中的常用概念和模型进行梳理总结(但是为了 ...
- 使用RStudio调试(debug)基础学习(二)和fGarch包中的garchFit函数估计GARCH模型的原理和源码
一.garchFit函数的参数--------------------------------------------- algorithm a string parameter that deter ...
- Python机器学习——线性模型
http://www.dataguru.cn/portal.php?mod=view&aid=3514 摘要 : 最近断断续续地在接触一些python的东西.按照我的习惯,首先从应用层面搞起, ...
随机推荐
- 转:JSP之include动态包含与静态包含
原文地址:http://www.cnblogs.com/ygj0930/p/6044676.html JSP中,include是一个经常用到的标签.当应用程序中所有的页面的某些部分(如标题.页脚和导航 ...
- day4_函数简单介绍
一.函数是什么? 函数一词来源于数学,但编程中的「函数」概念,与数学中的函数是有很大不同的,编程中的函数在英文中也有很多不同的叫法.在BASIC中叫做subroutine(子过程或子程序),在Pasc ...
- day-2 jmeter 操作mysql数据库
1) 导入jdbc的jar包,因为jmeter本身不能直接连接mysql,所以需要导入第三方的jar包,来连接mysql 2) 创建数据库连接配置,mysql的url.端口号.账号.密码 ...
- El表达式对照表
设置 session.getAttribute("date" "date") 取得username的值 (String)session.getValue( ...
- 《Redis 主从复制》
万念俱灰,说的就是我现在的心情...... 周六下午写了一下午的读书笔记,由于我的 MAC 有点问题,重启了一下...... 灰飞烟灭...... 读 第八章<集群> 总结 1:如何开启主 ...
- Python 常用的日期时间命令
今天用到自动添加当前时间,居然把之前的知识忘了,特整理常用的日期时间命令 代码: # 获取当前时间# import time# localtime = time.localtime(time.time ...
- POJ2431 Expedition 贪心
正解:模拟费用流 解题报告: 先放个传送门鸭,题目大意可以点Descriptions的第二个切换成中文翻译 然后为了方便表述,这里强行改一下题意(问题是一样的只是表述不一样辣,,, 就是说现在在高速公 ...
- 文件批量scp分发脚本
#!/bin/bash SERVERS="172.17.xx.y 172.17.pp.mm" PASSWORD=机器登录密码 auto_ssh_copy_file() { expe ...
- 安装setuptools
1.下载地址:https://pypi.python.org/pypi/setuptools 2.这是一个压缩文件,将其解压到安装目录,并进入该文件夹,按住shift键后,在文件夹空白处点击鼠标右键, ...
- 001-快速搭建Spring web应用【springboot 2.0.4】-gradle、springboot的启动过程分析、gradle多模块构建
一.概述 学习<精通Spring MVC4>书籍笔记 二.笔记 1.快速构建Spring starter web项目几种方式 1>使用Spring Tool Suite生成Start ...