Turing equation

时间限制: 1 Sec 内存限制: 128 MB


题目描述

The fight goes on, whether to store numbers starting with their most significant digit or their least significant digit. Sometimes this is also called the “Endian War”. The battleground dates far back into the early days of computer science. Joe Stoy, in his (by the way excellent) book “Denotational Semantics”, tells following story:

“The decision which way round the digits run is, of course, mathematically trivial. Indeed, one early British computer had numbers running from right to left (because the spot on an oscilloscope tube runs from left to right, but in serial logic the least significant digits are dealt with first). Turing used to mystify audiences at public lectures when, quite by accident, he would slip into this mode even for decimal arithmetic, and write things like 73+42=16. The next version of the machine was made more conventional simply by crossing the x-deflection wires: this, however, worried the engineers, whose waveforms were all backwards. That problem was in turn solved by providing a little window so that the engineers (who tended to be behind the computer anyway) could view the oscilloscope screen from the back.

You will play the role of the audience and judge on the truth value of Turing’s equations.

输入

The input contains several test cases. Each specifies on a single line a Turing equation. A Turing equation has the form “a+b=c”, where a, b, c are numbers made up of the digits 0,…,9. Each number will consist of at most 7 digits. This includes possible leading or trailing zeros. The equation “0+0=0” will finish the input and has to be processed, too. The equations will not contain any spaces.

输出

For each test case generate a line containing the word “TRUE” or the word “FALSE”, if the equation is true or false, respectively, in Turing’s interpretation, i.e. the numbers being read backwards.

样例输入

73+42=16

5+8=13

0001000+000200=00030

0+0=0

样例输出

TRUE

FALSE

TRUE

题意概括

输入一个等式a+b=c,判断等式是否成立(a,b,c输入时是倒着输入的,可能存在前导零)

解题思路

输入等式之后,先将a,b,c三个整数求出来,然后判断。

代码

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <queue> using namespace std; int main ()
{
char str[1000];
int a,b,c,i,j,k;
while (scanf("%s",str)!=EOF)
{
if (strcmp(str,"0+0=0")==0)
break;
a = b = c = 0;
int len = strlen(str);
for (i = len-1; i >= 0; i --)
{
if (str[i]>='0' && str[i]<='9')
while (str[i]>='0' && str[i]<='9')
{
a = a*10+str[i]-'0';
i --;
}
if (str[i] == '=')
break;
}
for (j = i; j >= 0; j --)
{
if (str[j]>='0' && str[j]<='9')
while (str[j]>='0' && str[j]<='9')
{
b = b*10+str[j]-'0';
j --;
}
if (str[j] == '+')
break;
}
for (k = j; k >= 0; k --)
{
if (str[k]>='0' && str[k]<='9')
while (str[k]>='0' && str[k]<='9')
{
c = c*10+str[k]-'0';
k --;
}
}
//printf("%d %d %d\n",a,b,c);
if (c+b == a)
printf("TRUE\n");
else
printf("FALSE\n");
}
return 0;
}

Turing equation的更多相关文章

  1. 第七届河南省赛F.Turing equation(模拟)

    10399: F.Turing equation Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 151  Solved: 84 [Submit][St ...

  2. zzuoj--10399--Turing equation(模拟)

    Turing equation Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 152  Solved: 85 [Submit][Status][Web ...

  3. poj 2572 Hard to Believe, but True!

    Hard to Believe, but True! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3537   Accep ...

  4. 每天一套题打卡|河南省第七届ACM/ICPC

    A 海岛争霸 题目:Q次询问,他想知道从岛屿A 到岛屿B 有没有行驶航线,若有的话,所经过的航线,危险程度最小可能是多少. 多源点最短路,用floyd 在松弛更新:g[i][k] < g[i][ ...

  5. HDU3333 Turing Tree(线段树)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=3333 Description After inventing Turing Tree, 3x ...

  6. CodeForces460B. Little Dima and Equation

    B. Little Dima and Equation time limit per test 1 second memory limit per test 256 megabytes input s ...

  7. ACM: FZU 2102 Solve equation - 手速题

     FZU 2102   Solve equation Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

  8. HDU 5937 Equation

    题意: 有1~9数字各有a1, a2, -, a9个, 有无穷多的+和=. 问只用这些数字, 最多能组成多少个不同的等式x+y=z, 其中x,y,z∈[1,9]. 等式中只要有一个数字不一样 就是不一 ...

  9. coursera机器学习笔记-多元线性回归,normal equation

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

随机推荐

  1. python+opencv 运行环境搭建

    1:安装pycharm,验证码你懂的 2:安装python3.5以上,或3.6,python2和3 的版本差异还蛮大 3:安装opencv,如下图 以上是方法一,还有之中方法是下载whl文件再手动安装 ...

  2. Python 编程快速上手 第十一章 Web scrapping

    前言 这一章讲了如何在 Web 上抓取相关的信息,工具是三个模块: webbrowser 模块:用于打开浏览器指定页面 requests 模块:用于下载文件 Beautiful Soup 模块:用于解 ...

  3. python基础之生成器,生成器函数,列表推导式

    内容梗概: 1. 生成器和生成器函数. 2. 列表推导式. 1.生成器函数1.1 生成器函数. 就是把return换成yield def gen(): print("爽歪歪") y ...

  4. Dynamic Shortest Path CodeForces - 843D (动态最短路)

    大意: n结点有向有权图, m个操作, 增加若干边的权重或询问源点为1的单源最短路. 本题一个特殊点在于每次只增加边权, 并且边权增加值很小, 询问量也很小. 我们可以用johnson的思想, 转化为 ...

  5. 关于react16.4——高阶组件(HOC)

    高阶组件是react中用于重用组件逻辑的高级技术.可以说是一种模式.具体来说呢,高阶组件是一个函数,它接收一个组件并返回一个新的组件. 就像这样, const EnhancedComponent = ...

  6. ALV打印模板(存代码)

    *&---------------------------------------------------------------------* *& Report ZMMF013 * ...

  7. WDA基础三:简单的INPUT选择,简单的TABLE显示

    先从基本的开始,简单的单选和TABLE显示 1.创建选择条件节点,CONTEXT页签,右键CONTEXT创建NODE,对应1:1  1:1  lead selection 2.创建结果节点,对应0:n ...

  8. 在ASP.NET MVC 框架中调用 html文件及解析get请求中的参数值

    在ASP.NET MVC 框架中调用 html文件: public ActionResult Index() { using (StreamReader sr = new StreamReader(P ...

  9. IDEA Activiti Designer插件---actiBPM汉字乱码问题

    1.找到IDEA的安装目录 2.用编辑器打开,在文件末尾添加 -Dfile.encoding=UTF-8

  10. server library[unbound] 服务未绑定解决办法

    情景如下: