Turing equation

时间限制: 1 Sec 内存限制: 128 MB


题目描述

The fight goes on, whether to store numbers starting with their most significant digit or their least significant digit. Sometimes this is also called the “Endian War”. The battleground dates far back into the early days of computer science. Joe Stoy, in his (by the way excellent) book “Denotational Semantics”, tells following story:

“The decision which way round the digits run is, of course, mathematically trivial. Indeed, one early British computer had numbers running from right to left (because the spot on an oscilloscope tube runs from left to right, but in serial logic the least significant digits are dealt with first). Turing used to mystify audiences at public lectures when, quite by accident, he would slip into this mode even for decimal arithmetic, and write things like 73+42=16. The next version of the machine was made more conventional simply by crossing the x-deflection wires: this, however, worried the engineers, whose waveforms were all backwards. That problem was in turn solved by providing a little window so that the engineers (who tended to be behind the computer anyway) could view the oscilloscope screen from the back.

You will play the role of the audience and judge on the truth value of Turing’s equations.

输入

The input contains several test cases. Each specifies on a single line a Turing equation. A Turing equation has the form “a+b=c”, where a, b, c are numbers made up of the digits 0,…,9. Each number will consist of at most 7 digits. This includes possible leading or trailing zeros. The equation “0+0=0” will finish the input and has to be processed, too. The equations will not contain any spaces.

输出

For each test case generate a line containing the word “TRUE” or the word “FALSE”, if the equation is true or false, respectively, in Turing’s interpretation, i.e. the numbers being read backwards.

样例输入

73+42=16

5+8=13

0001000+000200=00030

0+0=0

样例输出

TRUE

FALSE

TRUE

题意概括

输入一个等式a+b=c,判断等式是否成立(a,b,c输入时是倒着输入的,可能存在前导零)

解题思路

输入等式之后,先将a,b,c三个整数求出来,然后判断。

代码

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <queue> using namespace std; int main ()
{
char str[1000];
int a,b,c,i,j,k;
while (scanf("%s",str)!=EOF)
{
if (strcmp(str,"0+0=0")==0)
break;
a = b = c = 0;
int len = strlen(str);
for (i = len-1; i >= 0; i --)
{
if (str[i]>='0' && str[i]<='9')
while (str[i]>='0' && str[i]<='9')
{
a = a*10+str[i]-'0';
i --;
}
if (str[i] == '=')
break;
}
for (j = i; j >= 0; j --)
{
if (str[j]>='0' && str[j]<='9')
while (str[j]>='0' && str[j]<='9')
{
b = b*10+str[j]-'0';
j --;
}
if (str[j] == '+')
break;
}
for (k = j; k >= 0; k --)
{
if (str[k]>='0' && str[k]<='9')
while (str[k]>='0' && str[k]<='9')
{
c = c*10+str[k]-'0';
k --;
}
}
//printf("%d %d %d\n",a,b,c);
if (c+b == a)
printf("TRUE\n");
else
printf("FALSE\n");
}
return 0;
}

Turing equation的更多相关文章

  1. 第七届河南省赛F.Turing equation(模拟)

    10399: F.Turing equation Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 151  Solved: 84 [Submit][St ...

  2. zzuoj--10399--Turing equation(模拟)

    Turing equation Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 152  Solved: 85 [Submit][Status][Web ...

  3. poj 2572 Hard to Believe, but True!

    Hard to Believe, but True! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3537   Accep ...

  4. 每天一套题打卡|河南省第七届ACM/ICPC

    A 海岛争霸 题目:Q次询问,他想知道从岛屿A 到岛屿B 有没有行驶航线,若有的话,所经过的航线,危险程度最小可能是多少. 多源点最短路,用floyd 在松弛更新:g[i][k] < g[i][ ...

  5. HDU3333 Turing Tree(线段树)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=3333 Description After inventing Turing Tree, 3x ...

  6. CodeForces460B. Little Dima and Equation

    B. Little Dima and Equation time limit per test 1 second memory limit per test 256 megabytes input s ...

  7. ACM: FZU 2102 Solve equation - 手速题

     FZU 2102   Solve equation Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

  8. HDU 5937 Equation

    题意: 有1~9数字各有a1, a2, -, a9个, 有无穷多的+和=. 问只用这些数字, 最多能组成多少个不同的等式x+y=z, 其中x,y,z∈[1,9]. 等式中只要有一个数字不一样 就是不一 ...

  9. coursera机器学习笔记-多元线性回归,normal equation

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

随机推荐

  1. eclipse java项目转idea java项目Invalid bound statement (not found): com.mapper 报错问题

    再pom文件中加上 <build> <resources> <resource> <directory>src/main/java</direct ...

  2. English Voice of <<Beautiful now>>

    Beautiful Now  -Zedd & Jon Bellion I see what you're wearing, there's nothing beneath it 我看见了你身着 ...

  3. LeetCode--283--移动0

    问题描述: 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序. 示例: 输入: [0,1,0,3,12] 输出: [1,3,12,0,0] 说明: 必须在原 ...

  4. 20171022xlVBA练手提取入所记录

    Sub GetWordText改进() Dim Wb As Workbook Dim Sht As Worksheet Dim Rng As Range Dim wdApp As Object Dim ...

  5. gcc请不要优化

    gdb跟踪剖发现free_area_init中一段优化错了,如下:    memset(mem_map, 0, start_mem - (unsigned long) mem_map);    do ...

  6. 虚拟机linux 如何挂在U盘,NTFS格式如何挂载

    今天突发奇想,想挂载U盘到虚拟机的Centos 7 上,但是出了些问题,下边我就来说下linux挂在U盘的步骤 电脑插上U盘 win + R运行 services.msc 找到虚拟机的USB服务并运行 ...

  7. linux常用网络命令ping和arping

    linux常用网络命令ping和arping ping 向目标主机发送icmp请求包 常用来测试当前主机与目标主机网络连接状况 常见选项 -c              设置发包的个数 -s      ...

  8. bzoj4176. Lucas的数论 杜教筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\) 题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\) 那么 ...

  9. spring boot(十四)shiro登录认证与权限管理

    这篇文章我们来学习如何使用Spring Boot集成Apache Shiro.安全应该是互联网公司的一道生命线,几乎任何的公司都会涉及到这方面的需求.在Java领域一般有Spring Security ...

  10. python – time.sleep – 睡眠线程

    import time from threading import Thread class worker(Thread): def run(self): for x in xrange(0,11): ...