深度学习caffe测试代码c++
#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file);
std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);
private:
void SetMean(const string& mean_file);
std::vector<float> Predict(const cv::Mat& img);
void WrapInputLayer(std::vector<cv::Mat>* input_channels);
void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels);
private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
std::vector<string> labels_;
};
Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file);
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
std::vector<float> output = Predict(img);
std::vector<int> maxN = Argmax(output, N);
std::vector<Prediction> predictions;
for (int i = 0; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
}
return predictions;
}
/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector<float> Classifier::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
net_->ForwardPrefilled();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<float>(begin, end);
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Classifier::Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, CV_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, CV_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, CV_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, CV_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
int main(int argc, char** argv) {
if (argc != 6) {
std::cerr << "Usage: " << argv[0]
<< " deploy.prototxt network.caffemodel"
<< " mean.binaryproto labels.txt img.jpg" << std::endl;
return 1;
}
::google::InitGoogleLogging(argv[0]);
string model_file = argv[1];
string trained_file = argv[2];
string mean_file = argv[3];
string label_file = argv[4];
Classifier classifier(model_file, trained_file, mean_file, label_file);
string file = argv[5];
std::cout << "---------- Prediction for "
<< file << " ----------" << std::endl;
cv::Mat img = cv::imread(file, -1);
CHECK(!img.empty()) << "Unable to decode image " << file;
std::vector<Prediction> predictions = classifier.Classify(img);
/* Print the top N predictions. */
for (size_t i = 0; i < predictions.size(); ++i) {
Prediction p = predictions[i];
std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
<< p.first << "\"" << std::endl;
}
}
深度学习caffe测试代码c++的更多相关文章
- 人工智能深度学习Caffe框架介绍,优秀的深度学习架构
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...
- win7 配置微软的深度学习caffe
win7 配置微软的深度学习caffe 官方下载: https://github.com/Microsoft/caffe 然后 直接修改caffe目录下的windows目录下的项目的props文件 ...
- 【机器学习PAI实践十】深度学习Caffe框架实现图像分类的模型训练
背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Te ...
- 10K+,深度学习论文、代码最全汇总!
我们大部分人是如何查询和搜集深度学习相关论文的?绝大多数情况是根据关键字在谷歌.百度搜索.想寻找相关论文的复现代码又会去 GitHub 上搜索关键词.浪费了很多时间不说,论文.代码通常也不够完整.怎么 ...
- 学习《精通数据科学从线性回归到深度学习》PDF+代码分析
数据科学内容广泛,涉及到统计分析.机器学习以及计算机科学三方面的知识和技能.学习数据科学,推荐学习<精通数据科学从线性回归到深度学习>. 针对技术书籍,最好的阅读方法是对照每一章的示例代码 ...
- 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen N ...
- 对比《动手学深度学习》 PDF代码+《神经网络与深度学习 》PDF
随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中 ...
- 学习《深度学习与计算机视觉算法原理框架应用》《大数据架构详解从数据获取到深度学习》PDF代码
<深度学习与计算机视觉 算法原理.框架应用>全书共13章,分为2篇,第1篇基础知识,第2篇实例精讲.用通俗易懂的文字表达公式背后的原理,实例部分提供了一些工具,很实用. <大数据架构 ...
- 深度学习-Caffe编译测试的小总结
1. 搭建的环境和代码:win7 64bit + vs2013+CUDA7.5 http://blog.csdn.net/thesby/article/details/50880802 2. 编译,制 ...
随机推荐
- 有序广播和标准广播 --Android开发
一.标准广播和有序广播也很容易理解的. 标准广播: (1)通过sendBroadcast()方法发送 (2)通过异步方式发送,广播接收者的执行顺序是不明确的 有序广播: (1)通过sendOrderB ...
- 基于Struts2框架的文件下载 --- Struts2
一.Struts2指定类型文件的下载 1.最终功能实现的截图:(点击文件下载链接,下载文件 ) 2.核心代码 index.jsp: <%@ page language="java&qu ...
- Java接口简单理解
1.接口: 接口成员变量默认声明方式:public.static.final 接口成员方法默认声明方式:public.abstract public interface Interface_class ...
- p1459 Sorting a Three-Valued Sequence
如果将1和3都放到正确的位置,2自然也在正确的位置.那么统计1,2,3的数量num1,num2,num3.再看前num1个数有几个(设x个)不是1,那么x个1肯定要移.设前num1个数有y个3,最后n ...
- canvas学习之饼状图
接着上一节说,这次我使用canvas绘制了饼状图,主要是SectorGraph.js, 引入 import {canvasPoint} from '../../assets/js/canvas';im ...
- 使用C#读取网站相对路径文件夹下所有图片
public JsonResult GetCourseInitCover() { //设置相对路径 string imgurl = Server.MapPath("~/Content/ima ...
- POJ-3693/HDU-2459 Maximum repetition substring 最多重复次数的子串(需要输出具体子串,按字典序)
http://acm.hdu.edu.cn/showproblem.php?pid=2459 之前hihocoder那题可以算出最多重复次数,但是没有输出子串.一开始以为只要基于那个,每次更新答案的时 ...
- Vue.js,select中的option用ajax想循环控制值的显示 v-model可以实现但提示报错,这是为什么?
应该将v-model换成:value,因为v-model只能绑定一个值,无法绑定多个值 <select v-model="citys"> <optio ...
- grid 用于同一用例在不同测试环境下的测试结果
步骤: 1.http://www.seleniumhp.org/download 下载selenium standalone server 2.配置java环境 3.运行selenium serv ...
- hihocoder 1513 小Hi的烦恼 (bitset优化)
大意: n个人, 5门课, 给定每个人每门课的排名, 对于每个人输出有多少人5门课都比他差. 明显是个5维偏序问题, 题目有保证排名均不同, 可以用bitset优化为$O(\frac{n^2}{\om ...