Job流程:Shuffle详解
此文承接Job流程:Mapper类分析.MapReduce为确保每个reducer的输入都按键排序,数据从map输出到reducer输入的这段过程成为Shuffle。
map端
1).Spill溢写. 每个map()方法都将处理结果输出到一个环形内存缓冲区buf(100MB)中(mapreduce.task.io.sort.mb)。一旦缓冲区的数据量达到阀值0.8(mapreduce.map.sort.spill. percent),就会启动一个后台线程将缓冲区的数据溢写(spill to disk)到本地磁盘指定的目录下(mapreduce.cluster.local.dir)。溢写线程启动,首先锁定这80MB的内存,执行溢写前相关的一系列操作。而map输出则继续往剩下的20MB内存中写,互不影响。溢写磁盘过程中,如果缓冲区被填满,map输出会被阻塞,直到溢写磁盘过程完成。
map()函数只为key做加1操作,即内存缓存区内容为:
<a,1> <b,1> <a,1> <c,1> <a,1> <d,1>
2).Partition和Sort. 溢写线程写入磁盘前的相关操作:首先根据map输出最终要传送到的reducer把内存中的数据划分成相应的分区Partitioner,然后在各个分区中按Key进行内排序Sort。如果制定了combiner(1)操作,它会在内排序后的输出上进行。当以上步骤完成之后,溢写线程才开始写入磁盘。
注意:写磁盘时压缩map输出,不仅可以加快写磁盘速度,节约磁盘空间,而且减少传给reduce的数据量。默认是不压缩的,启动压缩只要将mapreduce.map.output.compress设置为true即可。详见解读:hadoop压缩格式
系统默认的HashPartition:只是把key hash后按reduceTask的个数取模,因此一般来说,不同的key分配到哪个reducer是随即的!所以,单个reducer内的数据是有序的,但reducer之间的数据却是乱序的!要想数据整体排序:①只设一个reducer,②使用TotalOrderPartitioner!
经过Partition和Sort后数据为:
<a,1> <a,1> <a,1> <b,1> <c,1> <d,1>
如果有Combiner阶段,则处理后的数据为:
<a,3> <b,1> <c,1> <d,1>
3).Merge合并. 每次Spill操作都会产生一个新的溢写文件,因此在map结果写入磁盘过程中会不断产生80MB的溢写文件。在map阶段完成之前,要将所有溢写文件被合并merge(或叫分组group)成一个已分区且已排序的map输出文件,此阶段是基于字节流排序过程。属性mapreduce.task.io.sort.factor控制着一次最多合并多少个溢出写文件,默认10。如果制定了combiner(2)操作,它会在合并后的大文件上运行。
注意:merge时不同partition间key是不会比较的,只有同一partition的key才会进行排序和合并。
merge的算法:每个spill文件中key/value都是有序的,但不同的文件却是乱序的,类似多个有序文件的多路归并算法。首先分别取出需要merge的spillfile的最小的key/value,放入一个内存堆中,然后每次从堆中取出一个最小的值,并把此值保存到merge的输出文件中。这里和hbase中scan的算法非常相似!
假设当前map节点生成两个相同的Spill文件,则Merge结果:
<a,3> <a,3> <b,1> <b,1> <c,1> <c,1> <d,1> <d,1>
如果有Combiner阶段:
<a,6> <b,2> <c,2> <d,2>
4).map端总结:
- 对于map输出的partition分区是在写入内存buf前就做好的了。我们可以通过继承Partitioner类实现自定义分区,将自己想要的数据分到同一个reducer中。
- 在spill过程中map输出也会继续。因此,对内存buf相关参数的调优是MR调优的重点之一。
- 排序是MR默认的行为,内存中的排序是对结构化的对象进行比较,调用的是compareTo()方法。而merge阶段排序是对序列化后的字节数组进行排序,调用Comparator比较器中的compare()方法进行二次排序。
- Combiner在spill和merge阶段都会进行。Combiner是基于Key对Map结果进行规约处理,减小Map与Reduce之间的数据量传输。但需要注意不是所有的场景都适合combine,比如平均值。
- Combiner本身已经执行了reduce()操作,为什么在Reducer阶段还要执行reduce()操作? 回答:combiner只是处理了各个节点自身的Map中间结果,而Reducer则是将各个节点的Map结果汇集,再进行统一处理。
reduce如何知道要从那个NM取得map输出呢?
a). map任务成功完成之后,它会通过心跳机制通知MR-AM状态已更新。因此,对于指定作业的MR-AM知道map输出的映射关系。reduce中有一个线程定期询问MR-AM以便获得map输出的位置,直到reduce获得所有map的输出位置。
b). 由于reducer可能失败,因此MR-AM并没有在第一个reducer检索到map输出时就立即从磁盘上删除它们。相反,MR-AM会等待,直到整个MR作业完成才删除map输出。
Reduce端
5).HTTP请求. map输出文件保存在运行map任务的NodeManage节点的本地磁盘。reducer通过HTTP方式从各个NM上拷贝map中间结果,而每个NM通过jetty server处理这些http请求,所以可以适当配置调整jetty server的工作线程数(mapreduce.tasktracker.http.threads,默认40)。此设置针对整个MR任务,而不是针对每个map子任务。在运行大型作业的大型集群上,此值可以根据需要调整。
6).Copy阶段. 现在,NM需要为分区文件运行reduce任务。更进一步,reduce任务需要集群上若干个map任务的中间结果作为其特殊的分区文件。每个map任务的完成时间可能不同,因此只要有一个map任务完成,reduce任务就开始复制其输出。这就是reduce任务的复制阶段(copy phase)。Reduce任务默认有5个线程从map端拷贝数据,对应属性mapreduce.reduce.shuffle.parallelcopies。
7).Sort/Merge阶段. Map结果首先会被复制到reduce节点的内存缓冲区(mapreduce.reduce.shuffle.input.buffer.percent,默认0.70. 指定内存HeapSize的多少比例用于缓存数据,内存大小可通过mapred.child.java.opts来设置,默认200M),达到缓冲区阈值(mapreduce.reduce.shuffle.merge.percent,默认0.66),则合并后溢写到本地磁盘。随着磁盘上溢写文件的不断增多,reduce任务进入排序阶段(sort phase)。更恰当的说是合并阶段,因为排序已在map端进行,这个阶段将合并map输出,维持其顺序排序。合并是循环进行的。比如,如果有50个map输出,而合并因子是10(mapreduce.task.io.sort.factor,默认10,与map的合并类似),合并将进行5趟。每趟将10个文件合并成一个文件,因此最后有5个中间文件。
注意:为了合并,压缩的map输出都必须在内存中被解压缩。
8).执行Reduce. 在最后阶段,即reduce阶段,直接把5个中间文件输入reduce()函数,从而省略了一次合并写入磁盘,再从磁盘读取数据的往返行程。最后的合并既可来自内存和磁盘片段。在reduce阶段,对已排序的输入中每个键调用一次reduce()函数。此阶段的输出直接写到HDFS中,并且本NM节点保存第一个块副本(block replica)。
Job流程:Shuffle详解的更多相关文章
- 【转】ANDROID自定义视图——onMeasure,MeasureSpec源码 流程 思路详解
原文地址:http://blog.csdn.net/a396901990/article/details/36475213 简介: 在自定义view的时候,其实很简单,只需要知道3步骤: 1.测量—— ...
- (转)CentOS系统启动流程图文详解
CentOS系统启动流程图文详解. 原文:http://www.linuxidc.com/Linux/2017-03/141966.htm 熟悉系统启动流程对于我们学习Linux系统是非常有帮助的,虽 ...
- ANDROID自定义视图——onMeasure,MeasureSpec源码 流程 思路详解
简介: 在自定义view的时候,其实很简单,只需要知道3步骤: 1.测量--onMeasure():决定View的大小 2.布局--onLayout():决定View在ViewGroup中的位置 3. ...
- Struts2-整理笔记(一)介绍、搭建、流程、详解struts.xml
Struts2是一种前端的技术框架 替代Servlet来处理请求 Struts2优势 自动封装参数 参数校验 结果的处理(转发|重定向) 国际化 显示等待页面 表单的防止重复提交 搭建框架:导 ...
- Spark技术内幕: Shuffle详解(一)
通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用 ...
- Spark中的Spark Shuffle详解
Shuffle简介 Shuffle描述着数据从map task输出到reduce task输入的这段过程.shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过s ...
- 【转】ANDROID自定义视图——onLayout源码 流程 思路详解
转载(http://blog.csdn.net/a396901990) 简介: 在自定义view的时候,其实很简单,只需要知道3步骤: 1.测量——onMeasure():决定View的大小 2.布局 ...
- Mysql高手系列 - 第18篇:mysql流程控制语句详解(高手进阶)
Mysql系列的目标是:通过这个系列从入门到全面掌握一个高级开发所需要的全部技能. 这是Mysql系列第18篇. 环境:mysql5.7.25,cmd命令中进行演示. 代码中被[]包含的表示可选,|符 ...
- struts2-环境搭建-访问流程-配置详解-常量配置-类详解
1 struts2概述 1.1 概念 1.2 struts2使用优势 自动封装参数 参数校验 结果的处理(转发|重定向) 国际化 显示等待页面 表单的防止重复提交 struts2具有更加先进的架构以 ...
随机推荐
- sssssss
1dispatcherServlet—拦截到spring mvc的请求 2dispatchServlet调用HandlerMapping( DefaultAnnoationHandlerMapping ...
- CH5402 选课【树形DP】【背包】
5402 选课 0x50「动态规划」例题 描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了 N(N≤300) 门的选修课程,每个学生可选课程的数量 M 是 ...
- Requset和Response中的乱码问题
在我们的日常开发中,乱码问题,还是比较经常遇到的,有时候是浏览器端提交的数据到后台乱码了,有时候是后台响应的数据到前台浏览器端展现出现乱码了.下面我们将通过几个简单的例子来说明乱码的由来和解决方式. ...
- poj3735—Training little cats(特殊操作转化为矩阵操作)
题目链接:http://poj.org/problem?id=3735 题目意思: 调教猫咪:有n只饥渴的猫咪,现有一组羞耻连续操作,由k个操作组成,全部选自: 1. g i 给第i只猫咪一颗花生 2 ...
- post 传递参数中包含 html 代码解决办法,js加密,.net解密
今天遇到一个问题,就是用post方式传递参数,程序在vs中完美调试,但是在iis中,就无法运行了,显示传递的参数获取不到,报错了,查看浏览器请求情况,错误500,服务器内部错误,当时第一想法是接收方式 ...
- Xshell 连接虚拟机特别慢 解决方案
由于各种原因,xshell连接虚拟机的rhel或者CentOS都几乎是龟速...... 今天专门查了一下解决方案: 原来是ssh的服务端在连接时会自动检测dns环境是否一致导致的,修改为不检测即可,操 ...
- 解决 Invalid signature file digest for Manifest 问题
idea打包的jar文件在spark执行是报错: Invalid signature file digest for Manifest 通过以下命令解决: zip -d myjob.jar META- ...
- 【我的Android进阶之旅】 RxJava 理解Backpressure并解决异常 rx.exceptions.MissingBackpressureException
今天测试人员在测试应用APP的时候应用crash了,查看了下crash log如下所示: java.lang.IllegalStateException: Exception thrown on Sc ...
- maven之jre默认配置
需要在用户或者全局settings.xml中做如下配置 例:用户配置: 添加代码: <profile> <id>jdk-1.8</id> <activatio ...
- docker部署Jenkins,以及在Jenkins中使用宿主机的docker/docker-compose命令
使用最新的官方镜像jenkins/jenkins 第一次使用的docker部署jenkins的时候,出现了两个问题: 1.因为用户权限问题挂载/home/jenkins/data到/var/jenki ...