(1)剑指Offer之斐波那契数列问题和跳台阶问题
一 斐波那契数列
题目描述:
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。
n<=39
问题分析:
可以肯定的是这一题通过递归的方式是肯定能做出来,但是这样会有一个很大的问题,那就是递归大量的重复计算会导致内存溢出。另外可以使用迭代法,用fn1和fn2保存计算过程中的结果,并复用起来。下面我会把两个方法示例代码都给出来并给出两个方法的运行时间对比。
示例代码:
采用迭代法:
int Fibonacci(int number) {
if (number <= 0) {
return 0;
}
if (number == 1 || number == 2) {
return 1;
}
int first = 1, second = 1, third = 0;
for (int i = 3; i <= number; i++) {
third = first + second;
first = second;
second = third;
}
return third;
}
采用递归:
public int Fibonacci(int n) {
if (n <= 0) {
return 0;
}
if (n == 1||n==2) {
return 1;
}
return Fibonacci(n - 2) + Fibonacci(n - 1);
}
运行时间对比:
假设n为40我们分别使用迭代法和递归法计算,计算结果如下:
1. 迭代法
2. 递归法
二 跳台阶问题
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
问题分析:
正常分析法:
a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a,b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
找规律分析法:
f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 5, 可以总结出f(n) = f(n-1) + f(n-2)的规律。
但是为什么会出现这样的规律呢?假设现在6个台阶,我们可以从第5跳一步到6,这样的话有多少种方案跳到5就有多少种方案跳到6,另外我们也可以从4跳两步跳到6,跳到4有多少种方案的话,就有多少种方案跳到6,其他的不能从3跳到6什么的啦,所以最后就是f(6) = f(5) + f(4);这样子也很好理解变态跳台阶的问题了。
所以这道题其实就是斐波那契数列的问题。
代码只需要在上一题的代码稍做修改即可。和上一题唯一不同的就是这一题的初始元素变为 1 2 3 5 8…..而上一题为1 1 2 3 5 …….。另外这一题也可以用递归做,但是递归效率太低,所以我这里只给出了迭代方式的代码。
示例代码:
int jumpFloor(int number) {
if (number <= 0) {
return 0;
}
if (number == 1) {
return 1;
}
if (number == 2) {
return 2;
}
int first = 1, second = 2, third = 0;
for (int i = 3; i <= number; i++) {
third = first + second;
first = second;
second = third;
}
return third;
}
三 变态跳台阶问题
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
问题分析:
假设n>=2,第一步有n种跳法:跳1级、跳2级、到跳n级
跳1级,剩下n-1级,则剩下跳法是f(n-1)
跳2级,剩下n-2级,则剩下跳法是f(n-2)
……
跳n-1级,剩下1级,则剩下跳法是f(1)
跳n级,剩下0级,则剩下跳法是f(0)
所以在n>=2的情况下:
f(n)=f(n-1)+f(n-2)+…+f(1)
因为f(n-1)=f(n-2)+f(n-3)+…+f(1)
所以f(n)=2*f(n-1) 又f(1)=1,所以可得f(n)=2^(number-1)
示例代码:
int JumpFloorII(int number) {
return 1 << --number;//2^(number-1)用位移操作进行,更快
}
补充:
java中有三种移位运算符:
1. << : 左移运算符,等同于乘2的n次方
2. >>: 右移运算符,等同于除2的n次方
3. >>> 无符号右移运算符,不管移动前最高位是0还是1,右移后左侧产生的空位部分都以0来填充。与>>类似。
例:
int a = 16;
int b = a << 2;//左移2,等同于16 * 2的2次方,也就是16 * 4
int c = a >> 2;//右移2,等同于16 / 2的2次方,也就是16 / 4
欢迎关注我的微信公众号(分享各种Java学习资源,面试题,以及企业级Java实战项目回复关键字免费领取):
(1)剑指Offer之斐波那契数列问题和跳台阶问题的更多相关文章
- 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...
- 《剑指offer》斐波那契数列
本题来自<剑指offer> 斐波那契数列 矩阵覆盖 题目一: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 思路: ...
- 剑指offer:斐波那契数列
目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:斐波那契数列 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n< ...
- 力扣 - 剑指 Offer 10- I. 斐波那契数列
题目 剑指 Offer 10- I. 斐波那契数列 思路1(递归 / 自顶向下) 这题是很常见的一道入门递归题,可以采用自顶向下的递归方法,比如我们要求第n个位置的值,根据斐波那契数列的定义fib(n ...
- Go语言实现:【剑指offer】斐波那契数列
该题目来源于牛客网<剑指offer>专题. 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0) n<=39 Go语言实现: 递归: ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- 剑指Offer 7. 斐波那契数列 (递归)
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 题目地址 https://www.nowcoder.com/prac ...
- 《剑指offer》-斐波那契数列
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 这么直接的问fibonacci,显然是迭代计算.递归的问题在于重复计算,而迭代则避免了这一点:递归是自 ...
- 【剑指offer】斐波那契数列
一.题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 二.思路: 式子: n=0时,f=0:n=1或者n=2时f=1:否则f=f(n-1)+f(n ...
随机推荐
- SpringMVC 应知应会
springMVC 是表现层技术,可以用来代替 struts2,下面是简略图:主要是处理器和视图,只有这两个部分需要编写代码. springMVC 三大组件:处理器映射器,处理器适配器,视图解析器. ...
- Doves and bombs UVA - 10765(统计割顶所连接的连通块的数量)
题意:给定一个n个点的连通的无向图,一个点的“鸽子值”定义为将它从图中删去后连通块的个数. 求对应的点 和 每个点的“鸽子值” 用一个数组在判断割顶的那个地方 累加标记一下所连接的连通块的数量即可 初 ...
- hive 分区表和分桶表
1.创建分区表 hive> create table weather_list(year int,data int) partitioned by (createtime string,area ...
- 【MVVM Dev】PART_Editor的使用
一.前言 在日常的界面开发中,我们大多使用MVVM模式进行开发.通常情况下,一个PropertyGridControl或者DataGrid的ItemsSource设置好, 然后每一列绑定好 ...
- SCWS中文分词,demo演示
上文已经讲了关于SCSW中文分词的安装配置,本节进入demo演示: <?php header('Content-Type:text/html;charset=UTF-8'); echo '< ...
- PostgreSQL 传统 hash 分区方法和性能
背景 除了传统的基于trigger和rule的分区,PostgreSQL 10开始已经内置了分区功能(目前仅支持list和range),使用pg_pathman则支持hash分区. 从性能角度,目前最 ...
- golang channel状态表
如果我们查看该表,可以察觉到在操作中可能产生问题的地方.这里有三个可能导致阻塞的操作,以及三 个可能导致程序恐慌的操作. 乍看之下,通道的使用上限制很多,但在检查了这个限制产生的动机并熟悉 了通道的使 ...
- OpenCV---分水岭算法
推文: OpenCV学习(7) 分水岭算法(1)(原理简介简单明了) OpenCV-Python教程:31.分水岭算法对图像进行分割(步骤讲解不错) 使用分水岭算法进行图像分割 (一)获取灰度图像,二 ...
- 获取Session和request方法
action中的几种写法 //第一种很少用public class LoginAction1 extends ActionSupport { private Map request; ...
- linux下开放端口
/sbin/iptables -I INPUT -p tcp --dport 80 -j ACCEPT 将该设置添加到防火墙的规则中 /etc/rc.d/init.d/iptables save