CUDA Samples: green ball
以下CUDA sample是分别用C++和CUDA实现的生成的绿色的球图像,并对其中使用到的CUDA函数进行了解说,code参考了《GPU高性能编程CUDA实战》一书的第五章,各个文件内容如下:
funset.cpp:
#include "funset.hpp" #include <random> #include <iostream> #include <vector> #include <memory> #include <string> #include "common.hpp" #include <opencv2/opencv.hpp> int test_green_ball() { const int width{ 512 }, height = width; cv::Mat mat1(height, width, CV_8UC4), mat2(height, width, CV_8UC4); float elapsed_time1{ 0.f }, elapsed_time2{ 0.f }; // milliseconds int ret = green_ball_cpu(mat1.data, width, height, &elapsed_time1); if (ret != 0) PRINT_ERROR_INFO(green_ball_cpu); ret = green_ball_gpu(mat2.data, width, height, &elapsed_time2); if (ret != 0) PRINT_ERROR_INFO(green_ball_gpu); for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { cv::Vec4b val1 = mat1.at<cv::Vec4b>(y, x); cv::Vec4b val2 = mat2.at<cv::Vec4b>(y, x); for (int i = 0; i < 4; ++i) { if (val1[i] != val2[i]) { fprintf(stderr, "their values are different at (%d, %d), i: %d, val1: %d, val2: %d\n", x, y, i, val1[i], val2[i]); //return -1; } } } } const std::string save_image_name{ "E:/GitCode/CUDA_Test/gree_ball.jpg" }; cv::imwrite(save_image_name, mat2); fprintf(stderr, "test green ball: cpu run time: %f ms, gpu run time: %f ms\n", elapsed_time1, elapsed_time2); return 0; }
green_ball.cpp:
#include "funset.hpp" #include <chrono> #include "common.hpp" int green_ball_cpu(unsigned char* ptr, int width, int height, float* elapsed_time) { auto start = std::chrono::steady_clock::now(); const float period{ 128.0f }; for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { int offset = x + y * width; unsigned char grey = (unsigned char)(255 * (sinf(x * 2.0f * PI / period) + 1.0f) * (sinf(y * 2.0f * PI / period) + 1.0f) / 4.0f) ; ptr[offset * 4 + 0] = 0; ptr[offset * 4 + 1] = grey; ptr[offset * 4 + 2] = 0; ptr[offset * 4 + 3] = 255; } } auto end = std::chrono::steady_clock::now(); auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start); *elapsed_time = duration.count() * 1.0e-6; return 0; }
green_ball.cu:
#include "funset.hpp" #include <iostream> #include <algorithm> #include <memory> #include <cuda_runtime.h> // For the CUDA runtime routines (prefixed with "cuda_") #include <device_launch_parameters.h> #include "common.hpp" /* __global__: 函数类型限定符;在设备上运行;在主机端调用,计算能力3.2及以上可以在 设备端调用;声明的函数的返回值必须是void类型;对此类型函数的调用是异步的,即在 设备完全完成它的运行之前就返回了;对此类型函数的调用必须指定执行配置,即用于在 设备上执行函数时的grid和block的维度,以及相关的流(即插入<<< >>>运算符); a kernel,表示此函数为内核函数(运行在GPU上的CUDA并行计算函数称为kernel(内核函 数),内核函数必须通过__global__函数类型限定符定义); */ __global__ static void green_ball(unsigned char* ptr, int width, int height) { /* gridDim: 内置变量,用于描述线程网格的维度,对于所有线程块来说,这个 变量是一个常数,用来保存线程格每一维的大小,即每个线程格中线程块的数量. 一个grid最多只有二维,为dim3类型; blockDim: 内置变量,用于说明每个block的维度与尺寸.为dim3类型,包含 了block在三个维度上的尺寸信息;对于所有线程块来说,这个变量是一个常数, 保存的是线程块中每一维的线程数量; blockIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程块的索引;用 于说明当前thread所在的block在整个grid中的位置,blockIdx.x取值范围是 [0,gridDim.x-1],blockIdx.y取值范围是[0, gridDim.y-1].为uint3类型, 包含了一个block在grid中各个维度上的索引信息; threadIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程索引;用于 说明当前thread在block中的位置;如果线程是一维的可获取threadIdx.x,如果 是二维的还可获取threadIdx.y,如果是三维的还可获取threadIdx.z;为uint3类 型,包含了一个thread在block中各个维度的索引信息 */ // map from threadIdx/BlockIdx to pixel position int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; int offset = x + y * blockDim.x * gridDim.x; /* __shared__: 变量类型限定符;使用__shared__限定符,或者与__device__限 定符连用,此时声明的变量位于block中的共享存储器空间中,与block具有相同 的生命周期,仅可通过block内的所有线程访问;__shared__和__constant__变量 默认为是静态存储;在__shared__前可以加extern关键字,但表示的是变量大小 由执行参数确定;__shared__变量在声明时不能初始化;可以将CUDA C的关键字 __shared__添加到变量声明中,这将使这个变量驻留在共享内存中;CUDA C编译 器对共享内存中的变量与普通变量将分别采取不同的处理方式 */ __shared__ float shared[16][16]; // == threads_block // now calculate the value at that position const float period = 128.0f; shared[threadIdx.x][threadIdx.y] = 255 * (sinf(x*2.0f*PI / period) + 1.0f) *(sinf(y*2.0f*PI / period) + 1.0f) / 4.0f; /* __syncthreads: 对线程块中的线程进行同步;CUDA架构将确保,除非线程块 中的每个线程都执行了__syncthreads(),否则没有任何线程能执行 __syncthreads()之后的指令;在同一个block中的线程通过共享存储器(shared memory)交换数据,并通过栅栏同步(可以在kernel函数中需要同步的位置调用 __syncthreads()函数)保证线程间能够正确地共享数据;使用clock()函数计时, 在内核函数中要测量的一段代码的开始和结束的位置分别调用一次clock()函数, 并将结果记录下来。由于调用__syncthreads()函数后,一个block中的所有 thread需要的时间是相同的,因此只需要记录每个block执行需要的时间就行了, 而不需要记录每个thread的时间 */ // removing this syncthreads shows graphically what happens // when it doesn't exist.this is an example of why we need it. __syncthreads(); ptr[offset * 4 + 0] = 0; ptr[offset * 4 + 1] = shared[/*15 - */threadIdx.x][/*15 - */threadIdx.y]; ptr[offset * 4 + 2] = 0; ptr[offset * 4 + 3] = 255; } int green_ball_gpu(unsigned char* ptr, int width, int height, float* elapsed_time) { /* cudaEvent_t: CUDA event types,结构体类型, CUDA事件,用于测量GPU在某 个任务上花费的时间,CUDA中的事件本质上是一个GPU时间戳,由于CUDA事件是在 GPU上实现的,因此它们不适于对同时包含设备代码和主机代码的混合代码计时 */ cudaEvent_t start, stop; // cudaEventCreate: 创建一个事件对象,异步启动 cudaEventCreate(&start); cudaEventCreate(&stop); // cudaEventRecord: 记录一个事件,异步启动,start记录起始时间 cudaEventRecord(start, 0); const size_t length{ width * height * 4 * sizeof(unsigned char) }; unsigned char* dev{ nullptr }; // cudaMalloc: 在设备端分配内存 cudaMalloc(&dev, length); const int threads_block{ 16 }; dim3 blocks(width / threads_block, height / threads_block); dim3 threads(threads_block, threads_block); /* <<< >>>: 为CUDA引入的运算符,指定线程网格和线程块维度等,传递执行参 数给CUDA编译器和运行时系统,用于说明内核函数中的线程数量,以及线程是如何 组织的;尖括号中这些参数并不是传递给设备代码的参数,而是告诉运行时如何 启动设备代码,传递给设备代码本身的参数是放在圆括号中传递的,就像标准的函 数调用一样;不同计算能力的设备对线程的总数和组织方式有不同的约束;必须 先为kernel中用到的数组或变量分配好足够的空间,再调用kernel函数,否则在 GPU计算时会发生错误,例如越界等; 使用运行时API时,需要在调用的内核函数名与参数列表直接以<<<Dg,Db,Ns,S>>> 的形式设置执行配置,其中:Dg是一个dim3型变量,用于设置grid的维度和各个 维度上的尺寸.设置好Dg后,grid中将有Dg.x*Dg.y个block,Dg.z必须为1;Db是 一个dim3型变量,用于设置block的维度和各个维度上的尺寸.设置好Db后,每个 block中将有Db.x*Db.y*Db.z个thread;Ns是一个size_t型变量,指定各块为此调 用动态分配的共享存储器大小,这些动态分配的存储器可供声明为外部数组 (extern __shared__)的其他任何变量使用;Ns是一个可选参数,默认值为0;S为 cudaStream_t类型,用于设置与内核函数关联的流.S是一个可选参数,默认值0. */ green_ball << <blocks, threads >> >(dev, width, height); /* cudaMemcpy: 在主机端和设备端拷贝数据,此函数第四个参数仅能是下面之一: (1). cudaMemcpyHostToHost: 拷贝数据从主机端到主机端 (2). cudaMemcpyHostToDevice: 拷贝数据从主机端到设备端 (3). cudaMemcpyDeviceToHost: 拷贝数据从设备端到主机端 (4). cudaMemcpyDeviceToDevice: 拷贝数据从设备端到设备端 (5). cudaMemcpyDefault: 从指针值自动推断拷贝数据方向,需要支持 统一虚拟寻址(CUDA6.0及以上版本) cudaMemcpy函数对于主机是同步的 */ cudaMemcpy(ptr, dev, length, cudaMemcpyDeviceToHost); // cudaFree: 释放设备上由cudaMalloc函数分配的内存 cudaFree(dev); // cudaEventRecord: 记录一个事件,异步启动,stop记录结束时间 cudaEventRecord(stop, 0); // cudaEventSynchronize: 事件同步,等待一个事件完成,异步启动 cudaEventSynchronize(stop); // cudaEventElapseTime: 计算两个事件之间经历的时间,单位为毫秒,异步启动 cudaEventElapsedTime(elapsed_time, start, stop); // cudaEventDestroy: 销毁事件对象,异步启动 cudaEventDestroy(start); cudaEventDestroy(stop); return 0; }
生成的结果图像如下:
执行结果如下:可见使用C++和CUDA实现的结果是完全一致的。
CUDA Samples: green ball的更多相关文章
- CUDA samples 2.3节 用CUDA示例来创建CUDA项目
2.3.1. Creating CUDA Projects for Windows 略 2.3.2 Creating CUDA Projects for Linux 默认的samples的安装路径 ...
- CUDA samples 第三章 sample reference 概况
示例代码分为下列几类: 1. Simple Reference 基础CUDA示例,适用于初学者, 反应了运用CUDA和CUDA runtime APIs的一些基本概念. 2. Utilitie ...
- CUDA Samples: 获取设备属性信息
通过调用CUDA的cudaGetDeviceProperties函数可以获得指定设备的相关信息,此函数会根据GPU显卡和CUDA版本的不同得到的结果也有所差异,下面code列出了经常用到的设备信息: ...
- CUDA Samples: matrix multiplication(C = A * B)
以下CUDA sample是分别用C++和CUDA实现的两矩阵相乘运算code即C= A*B,CUDA中包含了两种核函数的实现方法,第一种方法来自于CUDA Samples\v8.0\0_Simple ...
- CUDA Samples:Vector Add
以下CUDA sample是分别用C++和CUDA实现的两向量相加操作,参考CUDA 8.0中的sample:C:\ProgramData\NVIDIA Corporation\CUDA Sample ...
- CUDA Samples: dot product(使用零拷贝内存)
以下CUDA sample是分别用C++和CUDA实现的点积运算code,CUDA包括普通实现和采用零拷贝内存实现两种,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程C ...
- CUDA Samples: Streams' usage
以下CUDA sample是分别用C++和CUDA实现的流的使用code,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程CUDA实战>一书的第十章,各个文件内容如 ...
- CUDA Samples: Calculate Histogram(atomicAdd)
以下CUDA sample是分别用C++和CUDA实现的计算一维直方图,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程CUDA实战>一书的第九章,各个文件内容如下 ...
- CUDA Samples: heat conduction(模拟热传导)
以下CUDA sample是分别用C++和CUDA实现的模拟热传导生成的图像,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程CUDA实战>一书的第七章,各个文件内 ...
随机推荐
- VisualStudio下如何编译和使用最新版本的OpenCV(修正版)
OpenCV是托管于GitHub的开源项目,本文具体解决一个问题,就是“获取最新版本的OpenCV,并且在自己的项目中使用起来" 最新版本 2017年3月31日 BY:jsxyhelu ...
- 20145307第三次JAVA学习实验报告
20145307 <Java程序设计>第三次实验报告 北京电子科技学院(BESTI)实验报告 课程:Java程序设计 班级:1453 指导教师:娄嘉鹏 实验日期:2016.04.22 实验 ...
- RocEDU.阅读.写作《苏菲的世界》书摘(三)
根据柏拉图的说法,人是一种具有双重性质的生物.我们的身体是"流动"的,与感官的世界不可分割,并且其命运与世界上其他每一件事物(如肥皂泡)都相同.我们所有的感官都是以身体为基础,因此 ...
- 重新想,重新看——CSS3变形,过渡与动画④
最后,我们来探讨一下CSS3的动画属性. 之前提到过,实际上过渡也算作动画的一种.但过渡作为动画的缺陷在于,只能使元素属性从一个值“过渡”至另一个值,但如果想要使元素的属性值根据需要在时间轴上不断变化 ...
- [BZOJ3733]Iloczyn
Description 给定正整数n和k,问能否将n分解为k个不同正整数的乘积 Input 第一行一个数T(T<=4000)表示测试组数 接下来T行每行两个数n(n<=10^9),k(k& ...
- ubuntu系统samba服务的安装配置
安装 sudo apt-get install samba 配置 打开Samba配置文件: sudo gedit /etc/samba/smb.conf 在其最后添加: [share] path = ...
- Mysql binlog设置
一:Binlog文件信息 1. binlog基本定义:二进制日志,也成为二进制日志,记录对数据发生或潜在发生更改的SQL语句,并以二进制的形式保存在磁盘中: 2. 作用:MySQL的作用类似于Ora ...
- windows下,python3安装django和mysql驱动
1.安装python3和django (1)Python 下载地址:https://www.python.org/downloads/ (2)Django 下载地址:https://www.djang ...
- ubuntu16.04后续工作
一.ruijie https://blog.csdn.net/u012217085/article/details/24369335 https://blog.csdn.net/Lv_Victor/a ...
- Python学习札记(十五) 高级特性1 切片
参考: 高级特性 切片 Note 1.掌握了Python的基础语法之后,就可以写出很多很有用的程序了,比如打印1-90的奇数: #!/usr/bin/env python3 L = [] n = 1 ...