【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统
Lecture 16 Recommender Systems 推荐系统
16.1 问题形式化 Problem Formulation
在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到一组优良的特征。通过推荐系统(recommender systems),将领略一小部分特征学习的思想。
假使有 5 部电影,3部爱情片、2部动作片。 4 个用户为其中的部分电影打了分。现在希望构建一个算法,预测每个人可能给没看过的电影打多少分,以此作为推荐的依据。
下面引入一些标记:
nu 代表用户的数量
nm 代表电影的数量
r(i, j) 如果用户 j 给电影 i 评过分则 r(i, j) = 1
y(i,j) 代表用户 j 给电影 i 的评分 (注:这里 i 和 j 不要搞反)
mj 代表用户 j 评过分的电影的总数
16.2 基于内容的推荐系统 Content Based Recommendations
1 定义
在一个基于内容的推荐系统算法中,假设对于我们希望推荐的东西有一些数据,是这些东西的特征。
现在假设每部电影都有两个特征, x1 代表电影的浪漫程度,x2 代表电影的动作程度。
则每部电影都有一个特征向量,如 x(1)是第一部电影的特征向量,为[0.9 0]。
下面我们采用线性回归模型,针对每一个用户都训练一个线性回归模型,如θ(1) 是第一个用户的模型的参数。 于是有:
θ(j) 用户 j 的参数向量
x(i) 电影 i 的特征向量
对于用户 j 和电影 i,我们预测其评分为:(θ(j))Tx(i)
2 代价函数
针对用户 j,该线性回归模型的代价为预测误差的平方和,加上正则化项:
其中 i: r(i, j) 表示我们只计算那些用户 j 评过分的电影。在一般的线性回归模型中,误差项和正则项应该都是乘以1/2m,在这里我们将m去掉,且不对方差项θ0进行正则化处理。
上面的代价函数只是针对一个用户的,为了学习所有用户,我们将所有用户的代价函数求和:
如果我们要用梯度下降法来求解最优解,我们计算代价函数的偏导数后得到梯度下降的更新公式为:
16.3 协同过滤 Collaborative Filtering
在之前的基于内容的推荐系统中,使用电影的特征,训练出了每一个用户的参数。相反地,如果拥有用户的参数,可以学习得出电影的特征。
但是如果既没有用户的参数,也没有电影的特征,这两种方法都不可行了。可以使用协同过滤算法,同时学习这两者。
优化目标便改为同时针对x和θ进行。是一个:预测 θ,再反过来预测 x, 再预测 θ,再预测 x 的迭代过程。
16.4 协同过滤算法 Collaborative Filtering Algorithm
协同过滤的代价函数定义为:
对代价函数求偏导数:
(注:在协同过滤从算法中,通常不使用方差项,如果需要的话,算法会自动学得。)
协同过滤算法使用步骤如下:
1. 初始 x 和 θ 为一些随机小值
2. 使用梯度下降算法最小化代价函数 J
3. 在训练完算法后,通过计算 θTx 预测用户 j 给电影 i 的评分
通过这个学习过程获得的特征矩阵包含了有关电影的重要数据,这些数据不总是人能读懂的,但是可以用这些数据作为给用户推荐电影的依据。
总结:
16.5 向量化:低秩矩阵分解 Vectorization_ Low Rank Matrix Factorization
协同过滤算法的向量化实现
举例:
1)给出一件产品,能否找到与之相关的其它产品。
2)一位用户最近看上一件产品,有没有其它相关的产品可以推荐给他。
现在有5部电影,4位用户,矩阵 Y 就是一个 5 行 4 列的矩阵,存储每个用户对每个电影的评分数据:
通过使用 θ 和 x 计算,可以预测出每个用户对每个电影打的分数:
现在将所有 x 都集中在一个大的矩阵X中,每一部电影是一行;
将所有 θ 集中在一个大的Θ中,每个用户是一行。
则有:
因为矩阵X乘Θ的转置,在数学上具有低秩属性。因此这个算法也被称为低秩矩阵分解 low rank matrix factorization。
现在已经学习到了特征参数向量,那么可以使用这些向量做一些别的事情,比如度量两部电影之间的相似性。例如,如果一位用户正在观看电影 x(i) ,可以根据两部电影的特征向量之间的距离 ∥x(i) − x(j)∥,寻找另一部相似电影 x(j):
16.6 推行工作上的细节:均值归一化 Mean Normalization
现在新增一个用户 Eve,她没有为任何电影评分,那么我们以什么为依据为 Eve 推荐电影呢?
如果根据之前的模型,因为她没有打分,代价函数第一项为0。算法目标变为最小化最后一项,最后得到 θ(5) 中的元素都是0。现在拿着 θ(5) 预测出的瓶分都是0。这没有什么意义,因此需要做一些处理。
首先需要对结果 Y 矩阵进行均值归一化处理,将每一个用户对某一部电影的评分减去所有用户对该电影评分的平均值:
然后利用这个新的 Y 矩阵来训练算法。 最后在预测评分时,需要在预测值的基础上加回平均值,即预测值等于 (θ(j))Tx(i) + μi 。因此对于 Eve,新模型预测出的她的打分都是该电影的平均分。
【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统的更多相关文章
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 1_Introduction and Basic Concepts 介绍和基本概念
目录 1.1 欢迎1.2 机器学习是什么 1.2.1 机器学习定义 1.2.2 机器学习算法 - Supervised learning 监督学习 - Unsupervised learning 无 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测
Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 14—Dimensionality Reduction 降维
Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 13—Clustering 聚类
Lecture 13 聚类 Clustering 13.1 无监督学习简介 Unsupervised Learning Introduction 现在开始学习第一个无监督学习算法:聚类.我们的数据没 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机
Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machi ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计
Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议
Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 18—Photo OCR 应用实例:图片文字识别
Lecture 18—Photo OCR 应用实例:图片文字识别 18.1 问题描述和流程图 Problem Description and Pipeline 图像文字识别需要如下步骤: 1.文字侦测 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...
随机推荐
- Python 实现汉诺塔问题(递归)
有三根柱子一次为A,B,C 现在A柱子上有3个块,按照汉诺塔规则移动到C柱子上去,打印步骤? 我们这样理解:A为原始柱,C为目标柱,B为缓冲柱 1.定义一个函数move(n,a,b,c),n为原始柱上 ...
- CycloneII之EDA及学术开发功能描述
1.概述 同Stratix/Cyclone. 2.逻辑单元(Logic Cell)描述 在以前的架构中(比如Cyclone),单个LE包括一个组合逻辑和寄存器.对于Cyclone II来说,组合逻辑和 ...
- WINDOWS下kill进程的命令
相信大家都有用命令行(CMD)解决问题的习惯,起码我感觉自己在处理Windows系统故障时越来越离不开Windows PE了,今天我想介绍两个很实用的命令:Tasklist与Tskill.命令:Tas ...
- 论BOM管理的若干重要问题
在制造业信息化建设过程中,BOM管理的意义已经被广泛认同与重视.BOM管理是企业产品数据管理领域要解决的核心问题,对制造企业的信息流和业务流程具有重要影响,可以说企业BOM数据架构已是企业架构的一部分 ...
- php 操作提示框
/** * 跳转 * @param type $msg * @param type $url */ protected function jump($msg, $url) { $html = < ...
- GOF23设计模式之享元模式(flyweight)
一.享元模式概述 内存属于稀缺资源,不要随便浪费.如果有很多个完全相同或相似的对象,可以通过享元模式,节省内存. 享元模式核心: (1)享元模式可以共享的.方式高效的支持大量细粒度对象的重用: (2) ...
- python 生成器和生成器表达式
1.生成器 生成器的本质就是迭代器 生成器的特点和迭代器一样.取值方式和迭代器一样(__next__(),send():给上一个yield传值) 生成器一般由生成器函数或者生成器表达式来创建 其实就是 ...
- Java程序员之JS(一) 之 JQuery.ajax
背景:紧着现在项目的需要,先从JQuery.ajax出发,主要需求是通过 js 调用Java 代码,从而适应现在的项目. 先从几个概念开始讲解: 一. 什么是Deferred Deferred 对象 ...
- 二、Jetty的配置说明
运行Jetty Web应用 在Jetty应用服务器中部署war项目很简单,只需把项目war包放入Jetty的webapps子目录即可.你都无需重启Jetty,Jetty会自动随时监听webapps目录 ...
- linux下thinkphp取消调试模式后找不到网页解决方案
1.最大嫌疑是Runtime目录权限不足,导致common~runtime.php文件无法生成, 解决:1.整个Runtime目录删除,让系统重新生成; 2.给Runtime及以下的所有文件足够权限0 ...