c++ caffe 输出 activation map 、 层参数
python输出activation map与层参数:https://blog.csdn.net/tina_ttl/article/details/51033660
caffe::Net文档:
https://caffe.berkeleyvision.org/doxygen/classcaffe_1_1Net.html#a6f6cf9d40637f7576828d856bb1b1826
caffe::Blob文档:
http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1Blob.html
图像通道分离与合并cv::split() cv::merge()
https://blog.csdn.net/guduruyu/article/details/70837779
caffe官方提供的prediction代码
caffe提供了一个用已经训练好的caffemodel来分类单张图片的库(./build/examples/cpp_classification/classification.bin),该库的源码为文件./examples/cpp-classification/classification.cpp
- #include <caffe/caffe.hpp>
- #ifdef USE_OPENCV
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #endif // USE_OPENCV
- #include <algorithm>
- #include <iosfwd>
- #include <memory>
- #include <string>
- #include <utility>
- #include <vector>
- #ifdef USE_OPENCV
- using namespace caffe; // NOLINT(build/namespaces)
- using std::string;
- /* Pair (label, confidence) representing a prediction. */
- typedef std::pair<string, float> Prediction;
- class Classifier {
- public:
- Classifier(const string& model_file,
- const string& trained_file,
- const string& mean_file,
- const string& label_file);
- std::vector<Prediction> Classify(const cv::Mat& img, int N = );
- private:
- void SetMean(const string& mean_file);
- std::vector<float> Predict(const cv::Mat& img);
- void WrapInputLayer(std::vector<cv::Mat>* input_channels);
- void Preprocess(const cv::Mat& img,
- std::vector<cv::Mat>* input_channels);
- private:
- shared_ptr<Net<float> > net_;
- cv::Size input_geometry_;
- int num_channels_;
- cv::Mat mean_;
- std::vector<string> labels_;
- };
- /*分类对象构造文件*/
- Classifier::Classifier(const string& model_file,
- const string& trained_file,
- const string& mean_file,
- const string& label_file) {
- #ifdef CPU_ONLY
- Caffe::set_mode(Caffe::CPU);
- #else
- Caffe::set_mode(Caffe::GPU);
- #endif
- /* Load the network. */
- net_.reset(new Net<float>(model_file, TEST)); /*复制网络结构*/
- net_->CopyTrainedLayersFrom(trained_file); /*加载caffemodel,该函数在net.cpp中实现*/
- CHECK_EQ(net_->num_inputs(), ) << "Network should have exactly one input.";
- CHECK_EQ(net_->num_outputs(), ) << "Network should have exactly one output.";
- Blob<float>* input_layer = net_->input_blobs()[];
- num_channels_ = input_layer->channels(); /*该网络结构所要求的图片输入通道数*/
- CHECK(num_channels_ == || num_channels_ == )
- << "Input layer should have 1 or 3 channels.";
- input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); /*输入层需要的图片宽高*/
- /* Load the binaryproto mean file. */
- SetMean(mean_file); /*加载均值文件*/
- /* Load labels. */
- std::ifstream labels(label_file.c_str()); /*加载标签名称文件*/
- CHECK(labels) << "Unable to open labels file " << label_file;
- string line;
- while (std::getline(labels, line))
- labels_.push_back(string(line));
- Blob<float>* output_layer = net_->output_blobs()[]; /*检查标签个数与网络的输出结点个数是否一样*/
- CHECK_EQ(labels_.size(), output_layer->channels())
- << "Number of labels is different from the output layer dimension.";
- }
- static bool PairCompare(const std::pair<float, int>& lhs,
- const std::pair<float, int>& rhs) {
- return lhs.first > rhs.first;
- }
- /* Return the indices of the top N values of vector v. */
- static std::vector<int> Argmax(const std::vector<float>& v, int N) {
- std::vector<std::pair<float, int> > pairs;
- for (size_t i = ; i < v.size(); ++i)
- pairs.push_back(std::make_pair(v[i], i));
- std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
- std::vector<int> result;
- for (int i = ; i < N; ++i)
- result.push_back(pairs[i].second);
- return result;
- }
- /* Return the top N predictions. */
- std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
- std::vector<float> output = Predict(img); /*调用这个函数做分类*/
- N = std::min<int>(labels_.size(), N);
- std::vector<int> maxN = Argmax(output, N);
- std::vector<Prediction> predictions;
- for (int i = ; i < N; ++i) {
- int idx = maxN[i];
- predictions.push_back(std::make_pair(labels_[idx], output[idx]));
- }
- return predictions;
- }
- /* Load the mean file in binaryproto format. */
- void Classifier::SetMean(const string& mean_file) {
- BlobProto blob_proto;
- ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); /*读入均值文件在Io.cpp中实现*/
- /* Convert from BlobProto to Blob<float> */
- Blob<float> mean_blob;
- mean_blob.FromProto(blob_proto); /*将读入的均值文件转成Blob对象*//*Blob类在Blob.hpp中定义*/
- CHECK_EQ(mean_blob.channels(), num_channels_)
- << "Number of channels of mean file doesn't match input layer.";
- /* The format of the mean file is planar 32-bit float BGR or grayscale. */
- std::vector<cv::Mat> channels;
- float* data = mean_blob.mutable_cpu_data();
- for (int i = ; i < num_channels_; ++i) {
- /* Extract an individual channel. */
- cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
- channels.push_back(channel);
- data += mean_blob.height() * mean_blob.width();
- } /*将均值图像的每个通道图像拷贝到channel中*/
- /* Merge the separate channels into a single image. */
- cv::Mat mean;
- cv::merge(channels, mean); /*合并每个通道图像*/
- /* Compute the global mean pixel value and create a mean image
- * filled with this value. */
- cv::Scalar channel_mean = cv::mean(mean);
- mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
- }
- /*测试函数*/
- std::vector<float> Classifier::Predict(const cv::Mat& img) {
- Blob<float>* input_layer = net_->input_blobs()[];
- input_layer->Reshape(, num_channels_,
- input_geometry_.height, input_geometry_.width);/*没太看懂,应该是一些缩放*/
- /* Forward dimension change to all layers. */
- net_->Reshape();
- std::vector<cv::Mat> input_channels;
- WrapInputLayer(&input_channels);/*对输入层数据进行包装*/
- Preprocess(img, &input_channels); /*把传入的测试图像写入到输入层*/
- net_->Forward(); /*网络前向传播:计算出该测试图像属于哪个每个类别的概率也就是最终的输出层*/
- /* Copy the output layer to a std::vector */
- Blob<float>* output_layer = net_->output_blobs()[]; /*将输出层拷贝到向量*/
- const float* begin = output_layer->cpu_data();
- const float* end = begin + output_layer->channels();
- return std::vector<float>(begin, end);
- }
- /* Wrap the input layer of the network in separate cv::Mat objects
- * (one per channel). This way we save one memcpy operation and we
- * don't need to rely on cudaMemcpy2D. The last preprocessing
- * operation will write the separate channels directly to the input
- * layer. */
- void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
- Blob<float>* input_layer = net_->input_blobs()[];
- int width = input_layer->width();
- int height = input_layer->height();
- float* input_data = input_layer->mutable_cpu_data();
- for (int i = ; i < input_layer->channels(); ++i) {
- cv::Mat channel(height, width, CV_32FC1, input_data);
- input_channels->push_back(channel);
- input_data += width * height;
- }
- }
- void Classifier::Preprocess(const cv::Mat& img,
- std::vector<cv::Mat>* input_channels) {
- /* Convert the input image to the input image format of the network. */
- cv::Mat sample;
- if (img.channels() == && num_channels_ == )
- cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
- else if (img.channels() == && num_channels_ == )
- cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
- else if (img.channels() == && num_channels_ == )
- cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
- else if (img.channels() == && num_channels_ == )
- cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
- else
- sample = img;/*将输入的图像转换成输入层需要的图像格式*/
- cv::Mat sample_resized;
- if (sample.size() != input_geometry_)
- cv::resize(sample, sample_resized, input_geometry_); /*如果大小不一致则需要缩放*/
- else
- sample_resized = sample;
- cv::Mat sample_float;
- if (num_channels_ == )
- sample_resized.convertTo(sample_float, CV_32FC3); /*将数据转化成浮点型*/
- else
- sample_resized.convertTo(sample_float, CV_32FC1);
- cv::Mat sample_normalized;
- cv::subtract(sample_float, mean_, sample_normalized); /*应该是当前图像减去均值图像*/
- /* This operation will write the separate BGR planes directly to the
- * input layer of the network because it is wrapped by the cv::Mat
- * objects in input_channels. */
- cv::split(sample_normalized, *input_channels); /*把测试的图像通过之前的定义的wraper写入到输入层*/
- CHECK(reinterpret_cast<float*>(input_channels->at().data)
- == net_->input_blobs()[]->cpu_data())
- << "Input channels are not wrapping the input layer of the network.";
- }
- int main(int argc, char** argv) {
- if (argc != ) {
- std::cerr << "Usage: " << argv[]
- << " deploy.prototxt network.caffemodel"
- << " mean.binaryproto labels.txt img.jpg" << std::endl;
- return ;
- }
- ::google::InitGoogleLogging(argv[]);
- string model_file = argv[]; /*标识网络结构的deploy.prototxt文件*/
- string trained_file = argv[]; /*训练出来的模型文件caffemodel*/
- string mean_file = argv[]; /*均值.binaryproto文件*/
- string label_file = argv[]; /*标签文件:标识类别的名称*/
- Classifier classifier(model_file, trained_file, mean_file, label_file); /*创建对象并初始化网络、模型、均值、标签各类对象*/
- string file = argv[]; /*传入的待测试图片*/
- std::cout << "---------- Prediction for "
- << file << " ----------" << std::endl;
- cv::Mat img = cv::imread(file, -);
- CHECK(!img.empty()) << "Unable to decode image " << file;
- std::vector<Prediction> predictions = classifier.Classify(img); /*具体测试传入的图片并返回测试的结果:类别ID与概率值的Prediction类型数组*/
- /* Print the top N predictions. *//*将测试的结果打印*/
- for (size_t i = ; i < predictions.size(); ++i) {
- Prediction p = predictions[i];
- std::cout << std::fixed << std::setprecision() << p.second << " - \""
- << p.first << "\"" << std::endl;
- }
- }
- #else
- int main(int argc, char** argv) {
- LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
- }
- #endif // USE_OPENCV
输出activation map代码
输出层参数代码
c++ caffe 输出 activation map 、 层参数的更多相关文章
- caffe fine tune 复制预训练model的参数和freeze指定层参数
复制预训练model的参数,只需要重新copy一个train_val.prototxt.然后把不需要复制的层的名字改一下,如(fc7 -> fc7_new),然后fine tune即可. fre ...
- (原)torch中微调某层参数
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6221664.html 参考网址: https://github.com/torch/nn/issues ...
- pytorch中网络特征图(feture map)、卷积核权重、卷积核最匹配样本、类别激活图(Class Activation Map/CAM)、网络结构的可视化方法
目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视 ...
- caffe添加python数据层
caffe添加python数据层(ImageData) 在caffe中添加自定义层时,必须要实现这四个函数,在C++中是(LayerSetUp,Reshape,Forward_cpu,Backward ...
- 可视化CNN神经网路第一层参数
在上Andrew Ng的课的时候搜集到了课程里面自带的显示NN参数的代码,但是只能显示灰度图,而且NN里的参数没有通道的概念.所以想要获得可视化CNN的参数,并且达到彩色的效果就不行了. 所以就自己写 ...
- [caffe]网络各层参数设置
数据层 数据层是模型最底层,提供提供数据输入和数据从Blobs转换成别的格式进行保存输出,通常数据预处理(减去均值,放大缩小,裁剪和镜像等)也在这一层设置参数实现. 参数设置: name: 名称 ty ...
- caffe(5) 其他常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...
- caffe中全卷积层和全连接层训练参数如何确定
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...
- Caffe常用层参数介绍
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Cheese_pop/article/details/52024980 DATA crop:截取原图像中一个 ...
随机推荐
- 悦铃文件必须是CCITT A_Law格式的,且没有被压缩
最近在给公司弄来电彩铃,用的是电信的“悦铃”业务,办理过程不想多说了..给了我个网址和账号让我登录,登录界面惨不忍睹,感觉电信根本没有要宣传这项业务的意思,像是粗制滥造外包赶工做出来的.. 当然这不是 ...
- C语言 · 打印1~100间的质数(素数)
算法提高 c++_ch02_04 时间限制:1.0s 内存限制:256.0MB 问题描述 输出1~100间的质数并显示出来.注意1不是质数. 输出格式 每行输出一个质数. 2 3 . ...
- Linux网络编程wait()和waitpid()的讲解
本文讲的是关于wait和waitpid两者的区别与联系.为避免僵尸进程的产生,无论我们什么时候创建子进程时,主进程都需要等待子进程返回,以便对子进程进行清理.为此,我们在服务器程序中添加SIGCHLD ...
- 回车替换Tab 并不会 提交表单 IE Chrome 通过
网上一堆可以回车替换tab的代码,可是基本都忽略谷歌浏览器的兼容性,找了3个小时 试了无数遍,终于总结出这一段代码,希望能帮到需要的同学,也给自己留个备忘 document.onkeyd ...
- CSS(二):选择器
一.基本选择器 1.标签选择器 HTML标签作为标签选择器的名称,例如<h1>~<h6>.<p>等. 语法: p{font-size: 16px;} p:标签选择器 ...
- 源码分享!!!world文档转换为JPG图片
http://bbs.csdn.net/topics/390055515 —————————————————————————————————————————————————— 基本思路是:先将worl ...
- Android Studio多渠道打包的使用
项目地址 https://github.com/mcxiaoke/gradle-packer-plugin 项目介绍 gradle-packer-plugin 是Android多渠道打包工具Gradl ...
- php -- php的事务处理
MYSQL的事务处理主要有两种方法. 1.用begin,rollback,commit来实现 begin 开始一个事务 rollback 事务回滚 commit 事务确认 2.直接用set来改变mys ...
- mysql的优化基础知识
1.查看各种SQL执行的频率 mysql> show status like 'Com_select';--Com_insert,Com_delete,connections(试图连接mysql ...
- jQuery实现瀑布流布局详解(PC和移动端)
首先我们将如下样式的若干个单元写进body中,并将“box”向左浮动: <div class="box"> <img class="img" ...