步骤

1)安装R。windows操作系统安装包的链接:https://cran.r-project.org/bin/windows/base/

2)切换当前路径为脚本所在路径

点击 文件 > 改变工作目录

3)运行脚本

点击 文件 > 运行R脚本文件

如果希望自己生成训练数据,就运行生成训练数据的脚本。如果只是想生成测试数据,就运行生成测试数据的脚本。

生成训练数据的脚本

将男声的音频文件置于male文件夹下,将女声的音频文件置于female文件夹下

packages <- c('tuneR', 'seewave', 'fftw', 'caTools', 'warbleR', 'mice', 'e1071', 'rpart', 'e1071')
if (length(setdiff(packages, rownames(installed.packages()))) > ) {
install.packages(setdiff(packages, rownames(installed.packages())))
}
library(tuneR)
library(seewave)
library(caTools)
library(rpart) library(warbleR)
library(mice)
library(e1071) specan3 <- function(X, bp = c(,), wl = , threshold = , parallel = ){
# To use parallel processing: library(devtools), install_github('nathanvan/parallelsugar')
if(class(X) == "data.frame") {if(all(c("sound.files", "selec",
"start", "end") %in% colnames(X)))
{
start <- as.numeric(unlist(X$start))
end <- as.numeric(unlist(X$end))
sound.files <- as.character(unlist(X$sound.files))
selec <- as.character(unlist(X$selec))
} else stop(paste(paste(c("sound.files", "selec", "start", "end")[!(c("sound.files", "selec",
"start", "end") %in% colnames(X))], collapse=", "), "column(s) not found in data frame"))
} else stop("X is not a data frame") #if there are NAs in start or end stop
if(any(is.na(c(end, start)))) stop("NAs found in start and/or end") #if end or start are not numeric stop
if(all(class(end) != "numeric" & class(start) != "numeric")) stop("'end' and 'selec' must be numeric") #if any start higher than end stop
if(any(end - start<)) stop(paste("The start is higher than the end in", length(which(end - start<)), "case(s)")) #if any selections longer than 20 secs stop
if(any(end - start>)) stop(paste(length(which(end - start>)), "selection(s) longer than 20 sec"))
options( show.error.messages = TRUE) #if bp is not vector or length!=2 stop
if(!is.vector(bp)) stop("'bp' must be a numeric vector of length 2") else{
if(!length(bp) == ) stop("'bp' must be a numeric vector of length 2")} #return warning if not all sound files were found
fs <- list.files(path = getwd(), pattern = ".wav$", ignore.case = TRUE)
if(length(unique(sound.files[(sound.files %in% fs)])) != length(unique(sound.files)))
cat(paste(length(unique(sound.files))-length(unique(sound.files[(sound.files %in% fs)])),
".wav file(s) not found")) #count number of sound files in working directory and if stop
d <- which(sound.files %in% fs)
if(length(d) == ){
stop("The .wav files are not in the working directory")
} else {
start <- start[d]
end <- end[d]
selec <- selec[d]
sound.files <- sound.files[d]
} # If parallel is not numeric
if(!is.numeric(parallel)) stop("'parallel' must be a numeric vector of length 1")
if(any(!(parallel %% == ),parallel < )) stop("'parallel' should be a positive integer") # If parallel was called
if(parallel > )
{ options(warn = -)
if(all(Sys.info()[] == "Windows",requireNamespace("parallelsugar", quietly = TRUE) == TRUE))
lapp <- function(X, FUN) parallelsugar::mclapply(X, FUN, mc.cores = parallel) else
if(Sys.info()[] == "Windows"){
cat("Windows users need to install the 'parallelsugar' package for parallel computing (you are not doing it now!)")
lapp <- pbapply::pblapply} else lapp <- function(X, FUN) parallel::mclapply(X, FUN, mc.cores = parallel)} else lapp <- pbapply::pblapply options(warn = ) if(parallel == ) cat("Measuring acoustic parameters:")
x <- as.data.frame(lapp(:length(start), function(i) {
r <- tuneR::readWave(file.path(getwd(), sound.files[i]), from = start[i], to = end[i], units = "seconds") b<- bp #in case bp its higher than can be due to sampling rate
if(b[] > ceiling(r@samp.rate/) - ) b[] <- ceiling(r@samp.rate/) - #frequency spectrum analysis
songspec <- seewave::spec(r, f = r@samp.rate, plot = FALSE)
analysis <- seewave::specprop(songspec, f = r@samp.rate, flim = c(, /), plot = FALSE) #save parameters
meanfreq <- analysis$mean/
sd <- analysis$sd/
median <- analysis$median/
Q25 <- analysis$Q25/
Q75 <- analysis$Q75/
IQR <- analysis$IQR/
skew <- analysis$skewness
kurt <- analysis$kurtosis
sp.ent <- analysis$sh
sfm <- analysis$sfm
mode <- analysis$mode/
centroid <- analysis$cent/ #Frequency with amplitude peaks
peakf <- #seewave::fpeaks(songspec, f = r@samp.rate, wl = wl, nmax = , plot = FALSE)[, ] #Fundamental frequency parameters
ff <- seewave::fund(r, f = r@samp.rate, ovlp = , threshold = threshold,
fmax = , ylim=c(, /), plot = FALSE, wl = wl)[, ]
meanfun<-mean(ff, na.rm = T)
minfun<-min(ff, na.rm = T)
maxfun<-max(ff, na.rm = T) #Dominant frecuency parameters
y <- seewave::dfreq(r, f = r@samp.rate, wl = wl, ylim=c(, /), ovlp = , plot = F, threshold = threshold, bandpass = b * , fftw = TRUE)[, ]
meandom <- mean(y, na.rm = TRUE)
mindom <- min(y, na.rm = TRUE)
maxdom <- max(y, na.rm = TRUE)
dfrange <- (maxdom - mindom)
duration <- (end[i] - start[i]) #modulation index calculation
changes <- vector()
for(j in which(!is.na(y))){
change <- abs(y[j] - y[j + ])
changes <- append(changes, change)
}
if(mindom==maxdom) modindx<- else modindx <- mean(changes, na.rm = T)/dfrange #save results
return(c(duration, meanfreq, sd, median, Q25, Q75, IQR, skew, kurt, sp.ent, sfm, mode,
centroid, peakf, meanfun, minfun, maxfun, meandom, mindom, maxdom, dfrange, modindx))
})) #change result names rownames(x) <- c("duration", "meanfreq", "sd", "median", "Q25", "Q75", "IQR", "skew", "kurt", "sp.ent",
"sfm","mode", "centroid", "peakf", "meanfun", "minfun", "maxfun", "meandom", "mindom", "maxdom", "dfrange", "modindx")
x <- data.frame(sound.files, selec, as.data.frame(t(x)))
colnames(x)[:] <- c("sound.files", "selec")
rownames(x) <- c(:nrow(x)) return(x)
} processFolder <- function(folderName) {
# Start with empty data.frame.
data <- data.frame() # Get list of files in the folder.
list <- list.files(folderName, '\\.wav') # Add file list to data.frame for processing.
for (fileName in list) {
row <- data.frame(fileName, , , )
data <- rbind(data, row)
} # Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end') # Move into folder for processing.
setwd(folderName) # Process files.
acoustics <- specan3(data, parallel=) # Move back into parent folder.
setwd('..') acoustics
} gender <- function(filePath) {
if (!exists('genderBoosted')) {
load('model.bin')
} # Setup paths.
currentPath <- getwd()
fileName <- basename(filePath)
path <- dirname(filePath) # Set directory to read file.
setwd(path) # Start with empty data.frame.
data <- data.frame(fileName, , , ) # Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end') # Process files.
acoustics <- specan3(data, parallel=) # Restore path.
setwd(currentPath) predict(genderCombo, newdata=acoustics)
} # Load data
males <- processFolder('male')
females <- processFolder('female') # Set labels.
males$label <-
females$label <-
data <- rbind(males, females)
data$label <- factor(data$label, labels=c('male', 'female')) # Remove unused columns.
data$duration <- NULL
data$sound.files <- NULL
data$selec <- NULL
data$peakf <- NULL # Remove rows containing NA's.
data <- data[complete.cases(data),] # Write out csv dataset.
write.csv(data, file='voice.csv', sep=',', row.names=F)

meelo

生成测试数据的脚本

将测试音频文件置于test文件夹下

packages <- c('tuneR', 'seewave', 'fftw', 'caTools', 'warbleR', 'mice', 'e1071', 'rpart', 'e1071')
if (length(setdiff(packages, rownames(installed.packages()))) > ) {
install.packages(setdiff(packages, rownames(installed.packages())))
}
library(tuneR)
library(seewave)
library(caTools)
library(rpart) library(warbleR)
library(mice)
library(e1071) specan3 <- function(X, bp = c(,), wl = , threshold = , parallel = ){
# To use parallel processing: library(devtools), install_github('nathanvan/parallelsugar')
if(class(X) == "data.frame") {if(all(c("sound.files", "selec",
"start", "end") %in% colnames(X)))
{
start <- as.numeric(unlist(X$start))
end <- as.numeric(unlist(X$end))
sound.files <- as.character(unlist(X$sound.files))
selec <- as.character(unlist(X$selec))
} else stop(paste(paste(c("sound.files", "selec", "start", "end")[!(c("sound.files", "selec",
"start", "end") %in% colnames(X))], collapse=", "), "column(s) not found in data frame"))
} else stop("X is not a data frame") #if there are NAs in start or end stop
if(any(is.na(c(end, start)))) stop("NAs found in start and/or end") #if end or start are not numeric stop
if(all(class(end) != "numeric" & class(start) != "numeric")) stop("'end' and 'selec' must be numeric") #if any start higher than end stop
if(any(end - start<)) stop(paste("The start is higher than the end in", length(which(end - start<)), "case(s)")) #if any selections longer than 20 secs stop
if(any(end - start>)) stop(paste(length(which(end - start>)), "selection(s) longer than 20 sec"))
options( show.error.messages = TRUE) #if bp is not vector or length!=2 stop
if(!is.vector(bp)) stop("'bp' must be a numeric vector of length 2") else{
if(!length(bp) == ) stop("'bp' must be a numeric vector of length 2")} #return warning if not all sound files were found
fs <- list.files(path = getwd(), pattern = ".wav$", ignore.case = TRUE)
if(length(unique(sound.files[(sound.files %in% fs)])) != length(unique(sound.files)))
cat(paste(length(unique(sound.files))-length(unique(sound.files[(sound.files %in% fs)])),
".wav file(s) not found")) #count number of sound files in working directory and if stop
d <- which(sound.files %in% fs)
if(length(d) == ){
stop("The .wav files are not in the working directory")
} else {
start <- start[d]
end <- end[d]
selec <- selec[d]
sound.files <- sound.files[d]
} # If parallel is not numeric
if(!is.numeric(parallel)) stop("'parallel' must be a numeric vector of length 1")
if(any(!(parallel %% == ),parallel < )) stop("'parallel' should be a positive integer") # If parallel was called
if(parallel > )
{ options(warn = -)
if(all(Sys.info()[] == "Windows",requireNamespace("parallelsugar", quietly = TRUE) == TRUE))
lapp <- function(X, FUN) parallelsugar::mclapply(X, FUN, mc.cores = parallel) else
if(Sys.info()[] == "Windows"){
cat("Windows users need to install the 'parallelsugar' package for parallel computing (you are not doing it now!)")
lapp <- pbapply::pblapply} else lapp <- function(X, FUN) parallel::mclapply(X, FUN, mc.cores = parallel)} else lapp <- pbapply::pblapply options(warn = ) if(parallel == ) cat("Measuring acoustic parameters:")
x <- as.data.frame(lapp(:length(start), function(i) {
r <- tuneR::readWave(file.path(getwd(), sound.files[i]), from = start[i], to = end[i], units = "seconds") b<- bp #in case bp its higher than can be due to sampling rate
if(b[] > ceiling(r@samp.rate/) - ) b[] <- ceiling(r@samp.rate/) - #frequency spectrum analysis
songspec <- seewave::spec(r, f = r@samp.rate, plot = FALSE)
analysis <- seewave::specprop(songspec, f = r@samp.rate, flim = c(, /), plot = FALSE) #save parameters
meanfreq <- analysis$mean/
sd <- analysis$sd/
median <- analysis$median/
Q25 <- analysis$Q25/
Q75 <- analysis$Q75/
IQR <- analysis$IQR/
skew <- analysis$skewness
kurt <- analysis$kurtosis
sp.ent <- analysis$sh
sfm <- analysis$sfm
mode <- analysis$mode/
centroid <- analysis$cent/ #Frequency with amplitude peaks
peakf <- #seewave::fpeaks(songspec, f = r@samp.rate, wl = wl, nmax = , plot = FALSE)[, ] #Fundamental frequency parameters
ff <- seewave::fund(r, f = r@samp.rate, ovlp = , threshold = threshold,
fmax = , ylim=c(, /), plot = FALSE, wl = wl)[, ]
meanfun<-mean(ff, na.rm = T)
minfun<-min(ff, na.rm = T)
maxfun<-max(ff, na.rm = T) #Dominant frecuency parameters
y <- seewave::dfreq(r, f = r@samp.rate, wl = wl, ylim=c(, /), ovlp = , plot = F, threshold = threshold, bandpass = b * , fftw = TRUE)[, ]
meandom <- mean(y, na.rm = TRUE)
mindom <- min(y, na.rm = TRUE)
maxdom <- max(y, na.rm = TRUE)
dfrange <- (maxdom - mindom)
duration <- (end[i] - start[i]) #modulation index calculation
changes <- vector()
for(j in which(!is.na(y))){
change <- abs(y[j] - y[j + ])
changes <- append(changes, change)
}
if(mindom==maxdom) modindx<- else modindx <- mean(changes, na.rm = T)/dfrange #save results
return(c(duration, meanfreq, sd, median, Q25, Q75, IQR, skew, kurt, sp.ent, sfm, mode,
centroid, peakf, meanfun, minfun, maxfun, meandom, mindom, maxdom, dfrange, modindx))
})) #change result names rownames(x) <- c("duration", "meanfreq", "sd", "median", "Q25", "Q75", "IQR", "skew", "kurt", "sp.ent",
"sfm","mode", "centroid", "peakf", "meanfun", "minfun", "maxfun", "meandom", "mindom", "maxdom", "dfrange", "modindx")
x <- data.frame(sound.files, selec, as.data.frame(t(x)))
colnames(x)[:] <- c("sound.files", "selec")
rownames(x) <- c(:nrow(x)) return(x)
} processFolder <- function(folderName) {
# Start with empty data.frame.
data <- data.frame() # Get list of files in the folder.
list <- list.files(folderName, '\\.wav') # Add file list to data.frame for processing.
for (fileName in list) {
row <- data.frame(fileName, , , )
data <- rbind(data, row)
} # Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end') # Move into folder for processing.
setwd(folderName) # Process files.
acoustics <- specan3(data, parallel=) # Move back into parent folder.
setwd('..') acoustics
} gender <- function(filePath) {
if (!exists('genderBoosted')) {
load('model.bin')
} # Setup paths.
currentPath <- getwd()
fileName <- basename(filePath)
path <- dirname(filePath) # Set directory to read file.
setwd(path) # Start with empty data.frame.
data <- data.frame(fileName, , , ) # Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end') # Process files.
acoustics <- specan3(data, parallel=) # Restore path.
setwd(currentPath) predict(genderCombo, newdata=acoustics)
} # Load data
data <- processFolder('test') # Remove unused columns.
data$duration <- NULL
data$sound.files <- NULL
data$selec <- NULL
data$peakf <- NULL # Remove rows containing NA's.
data <- data[complete.cases(data),] # Write out csv dataset.
write.csv(data, file='test.csv', sep=',', row.names=F)

meelo

语音性别识别 - 使用R提取特征的更多相关文章

  1. 论文笔记:语音情感识别(三)手工特征+CRNN

    一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...

  2. 论文笔记:语音情感识别(四)语音特征之声谱图,log梅尔谱,MFCC,deltas

    一:原始信号 从音频文件中读取出来的原始语音信号通常称为raw waveform,是一个一维数组,长度是由音频长度和采样率决定,比如采样率Fs为16KHz,表示一秒钟内采样16000个点,这个时候如果 ...

  3. C++开发人脸性别识别教程(12)——加入性别识别功能

    经过之前几篇博客的解说,我们已经成功搭建了MFC应用框架,并实现了主要的图像显示和人脸检測程序,在这篇博文中我们要向当中加入性别识别代码. 关于性别识别,之前已经专门拿出两篇博客的篇幅来进行解说.这里 ...

  4. 论文笔记:语音情感识别(五)语音特征集之eGeMAPS,ComParE,09IS,BoAW

    一:LLDs特征和HSFs特征 (1)首先区分一下frame和utterance,frame就是一帧语音.utterance是一段语音,是比帧高一级的语音单位,通常指一句话,一个语音样本.uttera ...

  5. 论文笔记:语音情感识别(二)声谱图+CRNN

    一:An Attention Pooling based Representation Learning Method for Speech Emotion Recognition(2018 Inte ...

  6. 基于人脸识别+IMDB-WIFI+Caffe的性别识别

    本文用记录基于Caffe的人脸性别识别过程.基于imdb-wiki模型做finetune,imdb-wiki数据集合模型可从这里下载:https://data.vision.ee.ethz.ch/cv ...

  7. 图像物体检測识别中的LBP特征

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/xinzhangyanxiang/article/details/37317863 图像物体检測识别中 ...

  8. 基于深度学习的人脸性别识别系统(含UI界面,Python代码)

    摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检 ...

  9. 卷积神经网络提取特征并用于SVM

    模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取 ...

随机推荐

  1. 关于C#微信公众号开发的前言说明

    本人是昨天开始接触微信公众号开发的,昨天看一天官方文档,基本上晕乎乎的,刚开始接触这个真的有点困难,特别是C#在这方面的资料不多,不如php java方面的资料全. 所以我准备每天写一点关于C#微信开 ...

  2. 前端PHP入门-018-内置函数之文件包含函数

    在实际开发中,常常需要把程序中的公用代码放到一个文件中,使用这些代码的文件只需要包含这个文件即可.这种方法有助于提高代码的重用性,给代码的编写与维护带来很大的便利. 在PHP中, 有require.r ...

  3. [DeeplearningAI笔记]卷积神经网络3.10候选区域region proposals与R-CNN

    4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.10 region proposals候选区域与R-CNN 基于滑动窗口的目标检测算法将原始图片分割成小的样本图片,并传入分 ...

  4. LeetCode-Evaluate Reverse Polish Notation[AC源码]

    package com.lw.leet2; /** * @ClassName:Solution * @Description: * Evaluate the value of an arithmeti ...

  5. poj 3164 Command Network(最小树形图模板)

    Command Network http://poj.org/problem?id=3164 Time Limit: 1000MS   Memory Limit: 131072K Total Subm ...

  6. C11关键字&字面值改善

    1.原始字面值改善 原始字面值可以直接表示字符串的实际含义,但是一些特殊字符就需要转义. std::string str = "D:\A\B\test.txt"; std::cou ...

  7. DevExpress使用教程:GridView经验小结(官方中文文献经典资料技巧)

    下面是笔者自己总结的使用 DevExpress Gridview 的一些经验小结,分享给大家: 1.去除 GridView 头上的 "Drag a column header here to ...

  8. 关于Java泛型深入理解小总结

    1.何为泛型 首先泛型的本质便是类型参数化,通俗的说就是用一个变量来表示类型,这个类型可以是String,Integer等等不确定,表明可接受的类型,原理类似如下代码 int pattern; //声 ...

  9. c++ poco 使用mysql中文乱码问题

    poco 是c++ 一个比较好的库,现在正在学习使用它,碰到一些问题记录在此. poco版本:poco-1.46-all ,带有数据库的支持模块 操作系统:ubuntu 1.使用poco的MySQL模 ...

  10. antdVG6随记

    g6是一个很棒的可视化工具 目前支持开发者搭建属于自己的图,图分析.图应用.图编辑器 图编辑器可以支持多种图例的创建 G6 是一个简单.易用.完备的图可视化引擎,它在高定制能力的基础上,提供了一系列设 ...