1123 Is It a Complete AVL Tree(30 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:

5
88 70 61 63 65

Sample Output 1:

70 63 88 61 65
YES

Sample Input 2:

8
88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68
NO
 
题意:
本题是1066题和1110题的综合,通过给定的插入序列,首先需要正确构建AVL树;其次判断该树是否为完全二叉树。
 
思路:
略。看1066题和1110题的题解即可。
 
代码:
#include <cstdio>
#include <queue>
#include <algorithm>
using namespace std;

struct Node{
    int val;
    int height;//以该结点为根结点的子树高度
    Node *lchild,*rchild;
    Node(),lchild(nullptr),rchild(nullptr){}
};

int n;//结点个数

int getHeight(Node* pNode)
{
    ;
    else return pNode->height;
}

int getBalancedFactor(Node* pNode)
{
    return getHeight(pNode->lchild)-getHeight(pNode->rchild);
}

void updateHeight(Node* pNode)
{
    pNode->height=max(getHeight(pNode->lchild),getHeight(pNode->rchild))+;
}

void leftRotation(Node* &pNode)
{
    Node* temp=pNode->rchild;
    pNode->rchild=temp->lchild;
    temp->lchild=pNode;
    updateHeight(pNode);
    updateHeight(temp);
    pNode=temp;
}

void rightRotation(Node* &pNode)
{
    Node* temp=pNode->lchild;
    pNode->lchild=temp->rchild;
    temp->rchild=pNode;
    updateHeight(pNode);
    updateHeight(temp);
    pNode=temp;
}

void insert(Node* &root,int val)
{
    if(root==nullptr){
        root=new Node(val);
        return;
    }
    if(val < root->val){
        insert(root->lchild,val);
        updateHeight(root);
        ){
            ){//LL型
                rightRotation(root);
            }){//LR型
                leftRotation(root->lchild);
                rightRotation(root);
            }
        }
    }else{
        insert(root->rchild,val);
        updateHeight(root);
        ){
            ){//RR型
                leftRotation(root);
            }){//RL型
                rightRotation(root->rchild);
                leftRotation(root);
            }
        }
    }
}

//层序遍历,并判断是否为完全二叉树
bool levelOrderTraversal(Node* root)
{
    ;
    bool flag=true;
    queue<Node*> q;
    q.push(root);
    while(!q.empty()){
        Node* temp=q.front();
        q.pop();
        if(temp){
            printf("%d",temp->val);
            cnt++;
            if(cnt<n) printf(" ");
            q.push(temp->lchild);
            q.push(temp->rchild);
        }else{
            if(cnt<n) flag=false;
        }
    }
    return flag;
}

int main()
{
    int val;
    Node* root=nullptr;
    scanf("%d",&n);
    ;i<n;i++){
        scanf("%d",&val);
        insert(root,val);
    }
    bool flag=levelOrderTraversal(root);
    printf("\n%s",flag?"YES":"NO");
    ;
}

1123 Is It a Complete AVL Tree的更多相关文章

  1. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  2. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  3. 1123 Is It a Complete AVL Tree(30 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  4. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  5. PAT 1123 Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  6. PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  7. PAT甲级1123 Is It a Complete AVL Tree【AVL树】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...

  8. PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  9. PAT 1123. Is It a Complete AVL Tree (30)

    AVL树的插入,旋转. #include<map> #include<set> #include<ctime> #include<cmath> #inc ...

随机推荐

  1. WIFI 基础知识

    转载自:wifi基本知识 如侵犯您的版权,请联系:2378264731@qq.com 1. IE802.11简介 标准号 IEEE 802.11b IEEE 802.11a IEEE 802.11g ...

  2. c# DataTable 导出csv文件

    using System; using System.Data; using System.Configuration; using System.Collections.Generic; using ...

  3. 【SQL查询】正则表达式匹配字符串

    1. 元字符说明 元字符 含义 ^ 匹配输入字符串的开始位置. $ 匹配输入字符串的结尾位置. * 匹配前面的字符零次或多次. + 匹配前面的字符一次或多次. ? 匹配前面的字符零次或一次. . 匹配 ...

  4. Content-type与json对象/字符串杂谈

    这几天在对接项目另一个乙方的下行接口,因为最近一直用php开发,所以当那边接口文档上规定了接口传参类型的 时候,瞬间搞混了,但是这次的出错也让我对http的数据传输有了新的认知. 1.http的数据传 ...

  5. CentOS常用命令汇总

    将新创建的数据分配某个用户访问 grant all privileges on zhouzdb.* to 'zhouz'@'%' identified by '1234'; flush privile ...

  6. postgresql与Oracle:空字符串与null

    空字符串:两个单引号,中间无空格等任何内容 在postgresql中,空字符串与null是不同的:而oracle中,空字符串与null等同.测试如下: postgresql中: postgres=# ...

  7. Git详解之六 Git工具

    以下内容转载自:http://www.open-open.com/lib/view/open1328070367499.html Git 工具 现在,你已经学习了管理或者维护 Git 仓库,实现代码控 ...

  8. PXE_kickstart安装Ubuntu

    1.准备 1.1.apt-get remove iptables卸载IP过滤表1.2.下载镜像 2.DHCP安装2.1.apt-get install dhcp3-server(在ubuntu12中, ...

  9. [译]贵宾犬咬伤了TLS

    原文链接:https://community.qualys.com/blogs/securitylabs/2014/12/08/poodle-bites-tls 原文发表时间:2014.12.8 今天 ...

  10. C:源文件编译过程

    可以大致概括为3个阶段: 源文件 → 汇编代码(文本) 汇编代码 → 机器语言(二进制) 各个目标文件的处理 详细过程: 预编译处理 Pre-processing(*.c/ *.cpp → *.i) ...