[HAOI2010]计数(组合数学)(数位DP)
原题题意也就是给的数的全排列小于原数的个数。
我们可以很容易的想到重复元素的排列个数的公式。
但是我们发现阶乘的话很快就会爆long long啊(如果您想写高精请便)
之后我就尝试质因数分解。。。。但是遗憾的是太蒻了,没有成功,还是爆了。20分惨惨。最后也没有找出来哪里错了。
最后蒟蒻只好参考题解了。。。。。
之后我们再一考虑,会发现其实我们不需要重复元素排列个数的公式,我们只需要按照组合数的思想做即可。
假设我们现在有m个位置可以摆放,我们先放0,个数就是\(C_m^{cnt[0]}\),之后就只剩\(m-cnt[0]\)个位置了,那么\(ans+=C_{m-cnt[0]}^{cnt[1]}\)。。以此类推。。。
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
long long CC[1001][1001];
long long C(long long n,long long m){
if(CC[n][m]) return CC[n][m];
if(m==1) return n;
if(m==0||m==n) return 1;
if(m>n) return 0;
CC[n][m]=C(n-1,m)+C(n-1,m-1);
return CC[n][m];
}
int a[10],v[100];
long long ans;
int n;
string c;
long long solve(){
long long ans=1;
int m=n;
for(int i=0;i<=9;i++)
if(a[i])
ans*=C(m,a[i]),m-=a[i];
return ans;
}
int main()
{
cin>>c;
for(int i=0;i<c.length();i++)
v[++n]=c[i]-'0',a[v[n]]++;
int nn=n;
for(int i=1;i<=nn;i++)
{
n--;
for(int j=0;j<v[i];j++)
if(a[j])
a[j]--,ans+=solve(),a[j]++;
a[v[i]]--;
}
printf("%lld",ans);
}
最后蒟蒻在这里贴上自己的20分代码。。求dalao找错。。。。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
using namespace std;
long long ans;
vector<int>v;
string n;
int dig[60],sum[10];
inline long long solve(int cnt)
{
long long cur_ans=1;
int a[60];
memset(a,0,sizeof(a));
for(int i=1;i<=cnt;i++)
{
int now=i;
for(int j=2;j<=now;j++)
while(now%j==0)
now/=j,a[j]++;//printf("a[%d]=%d\n",j,a[j]);
}
for(int i=0;i<=9;i++)
{
if(sum[i]==0) continue;
int now=sum[i];
for(int j=2;j<=now;j++)
while(now%j==0)
now/=j,a[j]--;//printf("a[%d]=%d\n",j,a[j]);
}
for(int i=1;i<=50;i++)
if(a[i]!=0)
cur_ans*=(long long)pow(i,a[i]);
return cur_ans;
}
int main()
{
cin>>n;
for(int i=0;i<n.length();i++)
v.push_back(n[i]-'0');
int cnt=v.size();
for(int i=0;i<v.size();i++)dig[i+1]=v[i];
//for(int i=1;i<=cnt;i++) cout<<dig[i];
//cout<<endl;
for(int i=1;i<=cnt;i++)
{
int done[10];
memset(done,0,sizeof(done));
for(int j=i+1;j<=cnt;j++)
{
memset(sum,0,sizeof(sum));
if(done[dig[j]]==0&&dig[j]<dig[i])
{
done[dig[j]]=1;
for(int k=i+1;k<=cnt;k++)
sum[dig[k]]++;
sum[dig[i]]++;
sum[dig[j]]--;
ans+=(long long)solve(cnt-i);
//printf("dig[%d]=%d dig[%d]=%d ans=%lld\n",i,dig[i],j,dig[j],ans);
}
}
}
printf("%lld\n",ans);
return 0;
}
[HAOI2010]计数(组合数学)(数位DP)的更多相关文章
- BZOJ 2425 [HAOI2010]计数:数位dp + 组合数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意: 给你一个数字n,长度不超过50. 你可以将这个数字: (1)去掉若干个0 ( ...
- [luoguP2518][HAOI2010]计数(数位DP)
传送门 重新学习数位DP.. 有一个思路,枚举全排列,然后看看比当前数小的有多少个 当然肯定是不行的啦 但是我们可以用排列组合的知识求出全排列的个数 考虑数位dp 套用数位dp的方法,枚举每一位,然后 ...
- P2518 [HAOI2010]计数 类似数位dp
题意 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. 现 ...
- BZOJ2425 [HAOI2010]计数 【数位dp】
题目 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. 现 ...
- BZOJ_1833_[ZJOI2010]count 数字计数_数位DP
BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...
- BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...
- 【洛谷】2602: [ZJOI2010]数字计数【数位DP】
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...
- BZOJ1833 ZJOI2010 count 数字计数 【数位DP】
BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...
- LuoguP2602 [ZJOI2010]数字计数【数位dp】By cellur925
题目传送门 题目大意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 继续数位dp=w=. 这一次我们不需要记录$pre$啦!(撒花). 因为这次我们需要的 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
随机推荐
- 浅谈Trigger
- CSS隐藏元素 display visibility opacity的区别
{ display: none; /* 不占据空间,无法点击 */ } { visibility: hidden; /* 占据空间,无法点击 */ } { position: absolute; ...
- Codeforces 1154F (DP)
题意:有一个人去买铲子,他需要买正好k把.每把铲子有个标价,并且每把铲子最多只能被买一次.有m种优惠方案,每个优惠方案xi, yi是指如果这次恰好购买了xi把铲子,那么这次购买的铲子中最便宜的yi把将 ...
- BMP结构详解
位图BITMAPINFOHEADER 与BITMAPFILEHEADER: 先来看BITMAPINFOHEADER,只写几个主要的biSize包含的是这个结构体的大小(包括颜色表) biWidt ...
- SLAM Course - WS13/14 by Cyrill Stachniss (1) 课程资源汇总
本帖是作者学习SLAM 课程笔记的资源帖,汇总了SLAM Course - WS13/14 by Cyrill Stachniss 的相关资源. 1. 课程网站,有相关课件作业和教学视频下载. htt ...
- centos 6.5使用virtualenv指定python 2.7.x
1. 使用现有的 python 2.6.x 安装pip rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8. ...
- Linux分区挂载点介绍
一.Linux分区挂载点介绍 Linux分区挂载点介绍,推荐容量仅供参考不是绝对,跟各系统用途以及硬盘空间配额等因素实际调整: 分区类型 介绍 备注 /boot 启动分区 一般设置100M-200M, ...
- sqlserver全备份,差异备份和日志备份
差异备份是以上一个全备为基点,这个期间所有差异数据的备份. 日志备份是基于前一个全备+日志备份为基点,这个期间的事务日志的备份.(日志备份用于确保还原数据库到某个时间点) 在利用全备+日志备份 ...
- redis集群部署及常用的操作命令(上)
简单说下自己测试搭建简单的redis集群的大体步骤: 1.首先你的有6个redis(官方说最少6个,3master,3slave),可以先在一台机器上搭建,搭建到多台上应该只需要改变启动命令即可(可能 ...
- Excel2016通过宏生成拼音码
一:视图---->宏---->录制宏 二:试图---->宏---->查看宏 三:点击编辑,输入如下代码片段,点击保存,并选择是 Function pinyin(p As Str ...