GCD of Sequence

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 46    Accepted Submission(s): 14

Problem Description
Alice is playing a game with Bob.
Alice shows N integers a1, a2, …, aN, and M, K. She says each integers 1 ≤ ai ≤ M.
And now Alice wants to ask for each d = 1 to M, how many different sequences b1, b2, …, bN. which satisfies :
1. For each i = 1…N, 1 ≤ b[i] ≤ M
2. gcd(b1, b2, …, bN) = d
3. There will be exactly K position i that ai != bi (1 ≤ i ≤ n)

Alice thinks that the answer will be too large. In order not to annoy Bob, she only wants to know the answer modulo 1000000007.Bob can not solve the problem. Now he asks you for HELP!
Notes: gcd(x1, x2, …, xn) is the greatest common divisor of x1, x2, …, xn

 
Input
The input contains several test cases, terminated by EOF.
The first line of each test contains three integers N, M, K. (1 ≤ N, M ≤ 300000, 1 ≤ K ≤ N)
The second line contains N integers: a1, a2, ..., an (1 ≤ ai ≤ M) which is original sequence.

 
Output
For each test contains 1 lines :
The line contains M integer, the i-th integer is the answer shows above when d is the i-th number.
 
Sample Input
3 3 3
3 3 3
3 5 3
1 2 3
 
Sample Output
7 1 0
59 3 0 1 1

Hint

In the first test case :
when d = 1, {b} can be :
(1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 2, 2)
(2, 1, 1)
(2, 1, 2)
(2, 2, 1)
when d = 2, {b} can be :
(2, 2, 2)
And because {b} must have exactly K number(s) different from {a}, so {b} can't be (3, 3, 3), so Answer = 0

 
Source
 
Recommend
zhuyuanchen520
 

比赛时候想到了做法,但是错估了复杂度,一直没写出来,结束后才搞完、

其实就是从M算到1.

假如现在算i. 那么找到i ~ M中i的倍数。

看原序列中有多少个是i的倍数,设为cnt.

因为最终假如gcd是i的话,所有数都必须是i的倍数。

那就相当于在cnt个中,要把cnt-(N-K)个变掉,其余的(N-cnt)个要变成i的倍数。

i的倍数为t = M/i 个。

那么符合的数有C[cnt][N-K]*  (t-1)^(cnt-(N-K))  * t^(N-cnt)

这个算出来的是gcd是i的倍数的情况。

减掉gcd是2i,3i....这样的就行了

 /* **********************************************
Author : kuangbin
Created Time: 2013/8/13 16:39:35
File Name : F:\2013ACM练习\2013多校7\1010.cpp
*********************************************** */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
using namespace std; const int MOD = 1e9+;
long long pow_m(long long a,long long n)
{
long long ret = ;
long long tmp = a%MOD;
while(n)
{
if(n&)
{
ret *= tmp;
ret %= MOD;
}
tmp *= tmp;
tmp %= MOD;
n >>= ;
}
return ret;
}
long long C[];
//求ax = 1( mod m) 的x值,就是逆元(0<a<m)
long long inv(long long a,long long m)
{
if(a == )return ;
return inv(m%a,m)*(m-m/a)%m;
}
long long ans[];
int a[];
int num[];
int b[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int N,M,K;
while(scanf("%d%d%d",&N,&M,&K) == )
{
memset(num,,sizeof(num));
for(int i = ;i <= N;i++)
{
scanf("%d",&a[i]);
num[a[i]]++;
}
C[N-K] = ;
for(int i = N-K+;i <= N;i++)
{
C[i] = C[i-]*i%MOD*inv(i-(N-K),MOD)%MOD;
}
for(int i = M;i>= ;i--)
{
int cnt = ;
long long ss = ;
for(int j = ; j*i <= M;j++)
{
cnt += num[i*j];
if(j > )ss = (ss + ans[i*j])%MOD;
}
int t = M/i;
if(t == )
{
if(cnt == N-K)ans[i] = ;
else ans[i] = ;
continue;
} if(cnt < N-K)
{
ans[i] = ;
continue;
}
long long tmp = ;
//在cnt个中选N-K个为相同的
tmp =(tmp*C[cnt])%MOD;
//其余的cnt-(N-K)个有t-1个选择
tmp = ( tmp * pow_m(t-,cnt-(N-K)) )%MOD;
//其余N-cnt个本来就不相同的,有t个选择
tmp = (tmp * pow_m(t,N-cnt));
ans[i] = (tmp - ss + MOD)%MOD; }
for(int i = ;i <= M;i++)
{
printf("%I64d",ans[i]);
if(i < M)printf(" ");
else printf("\n");
} }
return ;
}

HDU 4675 GCD of Sequence (2013多校7 1010题 数学题)的更多相关文章

  1. HDU 4705 Y (2013多校10,1010题,简单树形DP)

    Y Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submiss ...

  2. HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  3. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  4. HDU 4691 Front compression (2013多校9 1006题 后缀数组)

    Front compression Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Othe ...

  5. HDU 4679 Terrorist’s destroy (2013多校8 1004题 树形DP)

    Terrorist’s destroy Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  6. HDU 4671 Backup Plan (2013多校7 1006题 构造)

    Backup Plan Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  7. HDU 4667 Building Fence(2013多校7 1002题 计算几何,凸包,圆和三角形)

    Building Fence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)To ...

  8. HDU 4675 GCD of Sequence(容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4675 题意:给出n,m,K,一个长度为n的数列A(1<=A[i]<=m).对于d(1< ...

  9. HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)

    题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...

随机推荐

  1. openjudge-NOI 2.6-1996 登山

    题目链接:http://noi.openjudge.cn/ch0206/1996/ 题解: 正反求两次LIS即可 #include<cstdio> #include<cstring& ...

  2. 在flask中返回requests响应

    在flask服务端,有时候需要使用requests请求其他url,并将响应返回回去.查阅了flask文档,About Responses,可以直接构造响应结果进行返回. If a tuple is r ...

  3. [HTML]增加input标签的multiple属性上传的文件数

    .发现问题 <input type="file" name="myfile[]" multiple="multiple"/> 最 ...

  4. Codeforces 445A Boredom(DP+单调队列优化)

    题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...

  5. linux抓包工具tcpdump基本使用

    tcpdump 是一款灵活.功能强大的抓包工具,能有效地帮助排查网络故障问题. tcpdump 是一个命令行实用工具,允许你抓取和分析经过系统的流量数据包.它通常被用作于网络故障分析工具以及安全工具. ...

  6. 【转】【delphi】ClientDataSet详细解读

    原文:http://www.cnblogs.com/lcw/p/3496764.html TClientDataSet的基本属性和方法 TClientDataSet控件继承自TDataSet,其数据存 ...

  7. jquery on方法(事件委托)

    jquery绑定事件处理函数的方法有好几个,比如:bind(),on(),delegate(),live(). 其中delegate和live都是用on实现的,效果也类似,live好像在1.7版本中已 ...

  8. HTML5 Video/Audio播放本地文件

    这段时间经常看到开发者在反复询问同一个问题,为什么通过设置src属性,不能播放本地的媒体文件?例如video.src=”D:\test.mp4”. 这是因为浏览器中的JavaScript不能直接直接访 ...

  9. OOD沉思录 --- 面向动作与面向对象 --- 避免全能类

    面向过程的软件开发通过非常集中化的控制机制来分解功能,在程序设计中表现就是大量的条件判断,深层次的循环嵌套等. 这种模式下,我们可以通过分析方法的参数,局部变量及其访问的全局变量来得到方法对数据的依赖 ...

  10. JAVA编程思想读书笔记(五)--多线程

    接上篇JAVA编程思想读书笔记(四)--对象的克隆 No1: daemon Thread(守护线程) 参考http://blog.csdn.net/pony_maggie/article/detail ...