最大权值匹配,贪心匈牙利即可。

检查一些人是否能被全部抓住可以采用左端点排序,右端点优先队列处理。

By:大奕哥

#include<bits/stdc++.h>
using namespace std;
const int N=;
struct node{
int l,r,c;
bool operator <(const node &b)const{
return c>b.c;
}
}p[N];
int match[N],ans,n;
bool v[N];
bool Hungary(int x)
{
for(int i=p[x].l;i<=p[x].r;++i)
{
if(!v[i])
{
v[i]=;
if(!match[i]||Hungary(match[i]))
{
match[i]=x;
return ;
}
}
}
return ;
}
int main()
{
// freopen("1.out","r",stdin);
// freopen("my.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;++i)
{
scanf("%d%d%d",&p[i].l,&p[i].r,&p[i].c);
p[i].r--;
}
sort(p+,p++n);
for(int i=;i<=n;++i)
{
memset(v,,sizeof(v));
if(Hungary(i))ans+=p[i].c;
}
printf("%d\n",ans);
return ;
}

BZOJ 4276: [ONTAK2015]Bajtman i Okrągły Robin的更多相关文章

  1. BZOJ 4276: [ONTAK2015]Bajtman i Okrągły Robin [线段树优化建边]

    4276: [ONTAK2015]Bajtman i Okrągły Robin 题意:\(n \le 5000\)个区间\(l,r\le 5000\),每个区间可以选一个点得到val[i]的价值,每 ...

  2. BZOJ 4276 [ONTAK2015]Bajtman i Okrągły Robin 费用流+线段树优化建图

    Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i]]这么多段长度为1时间中选出一个时间进行抢劫,并计划抢 ...

  3. bzoj 4276: [ONTAK2015]Bajtman i Okrągły Robin【线段树+最大费用最大流】

    --因为T点忘记还要+n所以选小了所以WA了一次 注意!题目中所给的时间是一边闭一边开的区间,所以读进来之后先l++(或者r--也行) 线段树优化建图,很神.(我记得还有个主席树优化建树的?)首先考虑 ...

  4. 4276: [ONTAK2015]Bajtman i Okrągły Robin

    4276: [ONTAK2015]Bajtman i Okrągły Robin Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 345  Solved ...

  5. [ONTAK2015]Bajtman i Okrągły Robin

    bzoj 4276: [ONTAK2015]Bajtman i Okrągły Robin Time Limit: 40 Sec  Memory Limit: 256 MB Description 有 ...

  6. 【BZOJ4276】[ONTAK2015]Bajtman i Okrągły Robin 线段树优化建图+费用流

    [BZOJ4276][ONTAK2015]Bajtman i Okrągły Robin Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2 ...

  7. BZOJ4276 : [ONTAK2015]Bajtman i Okrągły Robin

    建立线段树, S向每个叶子连边,容量1,费用0. 孩子向父亲连边,容量inf,费用0. 每个强盗向T连边,容量1,费用为c[i]. 对应区间内的点向每个强盗,容量1,费用0. 求最大费用流即可. #i ...

  8. BZOJ_4276_[ONTAK2015]Bajtman i Okrągły Robin_线段树优化建图+最大费用最大流

    BZOJ_4276_[ONTAK2015]Bajtman i Okrągły Robin_线段树优化建图+最大费用最大流 Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1 ...

  9. Bajtman i Okrągły Robin

    Bajtman i Okrągły Robin 题目描述 你是一个保安,你发现有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i] ...

随机推荐

  1. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  2. python-cookbook读书笔记

    今天开始读<python-cookbook>,书里有许多python优雅的写法,可以作为python的一本进阶书. 感谢译者.项目地址: https://github.com/yidao6 ...

  3. tar解压与压缩

    1.解压 tar -zxvf  压缩文件名  -C 指定的目录   (制定的目录必须存在) 2.压缩 tar -czvf  压缩后的文件名   要压缩的文件夹

  4. 巅峰极客第二场CTF部分writeup

    word-MISC 微信回答问题+word字体里. sqli-WEB 注册个admin空格即可,长字符截断. 晚上把后续的写出来.现在睡觉

  5. itext 生成pdf文件添加页眉页脚

    原文来自:https://www.cnblogs.com/joann/p/5511905.html 我只是记录所有jar版本,由于版本冲突及不兼容很让人头疼的,一共需要5个jar, 其中itextpd ...

  6. 在ubuntu中安装puppeteer

    https://github.com/GoogleChrome/puppeteer/blob/master/docs/troubleshooting.md 早些时候puppeteer刚出来,在vps上 ...

  7. 教你如何修改FireFox打开新标签页(NewTab Page)的行列数

    FireFox的打开新建标签页(即NewTab Page)默认只能显示3x3个网站缩略图,这9个自定义的网站,非常方便快捷,什么hao123的弱爆了,本人从未用过此类导航网站,曾经用过的也只是abou ...

  8. final修饰的变量是引用不能改变还是引用的对象不能改变

    我们都知道final修饰变量时 会变为常量,但是使 用final关键字修饰一个变量时,是引用不能变,还是引用的对象不能变? 下面让我们来看这段代码: /** * 验证final修饰的变量是引用不能变, ...

  9. Mysql聚合函数count(*) 的性能分析

    你首先要明确的是,在不同的 MySQL 引擎中,count(*) 有不同的实现方式. MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高: 而 ...

  10. Weblogic常用监控指标以及监控工具小结

    https://blog.csdn.net/hualusiyu/article/details/39583549