[bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)
Description
如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus)。所谓简单回路就是指在图上不重复经过任何一个顶点的回路。
举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:(4,3,2,1,6,5,4)、 (7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),而(2,3)同时出现在前两个的简单回路里。另外,第三张图也 不是仙人图,因为它并不是连通图。显然,仙人图上的每条边,或者是这张仙人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。定义在图 上两点之间的距离为这两点之间最短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。现在我们假定仙人图的每条边的权值都是1,你的任务是求 出给定的仙人图的直径。
Input
输入的第一行包括两个整数n 和m(1≤n≤50000以及0≤m≤10000)。其中n代表顶点个数,我们约定图中的顶点将从1到n编号。接下来一共有m行。代表m条路径。每行的开 始有一个整数k(2≤k≤1000),代表在这条路径上的顶点个数。接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两 个顶点的边。一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们保证所有的边都会出现在某条路径 上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。
Output
只需输出一个数,这个数表示仙人图的直径长度。
Sample Input
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
5 2 14 9 15 10 8
10 1
10 1 2 3 4 5 6 7 8 9 10
Sample Output
HINT
对第一个样例的说明:如图,6号点和12号点的最短路径长度为8,所以这张图的直径为8。
TAT似乎是第一次写仙人掌类题目……刚开始一直再想“缩点dp缩点dp缩点dp”……结果发现多个环是可以共用一点的,缩点没法玩啊= =所以还是Link一下巨神们的题解吧= =
我自己模仿的很弱的实现:
], *Eend = E;
], N, i, mid = size >> , *it = val, Max = ;
;i < size;++i)*it = F[Top[i]], Max = max(Max, min(i, size-i) + *(it++));
;i < mid;++i)*(it++) = F[Top[i]];
));
;i < N;++i){
;
;
);
);
u = v;getd(v);
Eend->init(u, v);adj[u].pb(Eend++);
Eend->init(v, u);adj[v].pb(Eend++);
}
}
dfs();
}
work();
printf(
#ifdef DEBUG
printf( ;
}
仙人掌dp
[bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)的更多相关文章
- bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图
http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...
- BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3467 Solved: 1438[Submit][Status][Discuss] Descripti ...
- BZOJ1023[SHOI2008]cactus仙人掌图 【仙人掌DP】
题目 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌 图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路. 举例来说 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...
- bzoj1023: [SHOI2008]cactus仙人掌图
学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...
- 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)
传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...
- bzoj1023 [SHOI2008]cactus仙人掌图 & poj3567 Cactus Reloaded——求仙人掌直径
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1023 http://poj.org/problem?id=3567 仙人掌!直接模仿 ...
- bzoj千题计划224:bzoj1023: [SHOI2008]cactus仙人掌图
又写了一遍,发出来做个记录 #include<cstdio> #include<algorithm> #include<iostream> using namesp ...
随机推荐
- 【总结】前端必须收藏的CSS3动效库!!!
现在的网站和App的设计中越来越重视用户体验,而优秀的动效则能使你的应用更具交互性,从而吸引更多用户的使用. 如果你对CSS3中定义动效还不熟练,或希望采用更加简单直接的方式在你的应用中引入动效的话, ...
- windows安装linux虚拟机、修改apt源
记录一下windows安装虚拟机以及初始配置的一些坑. 安装VMware Workstation 直接百度搜索VMware,选择合适的版本下载: 按照一般软件的安装步骤安装VMware Worksta ...
- 73.Vivado使用误区与进阶——在Vivado中实现ECO功能
关于Tcl在Vivado中的应用文章从Tcl的基本语法和在Vivado中的应用展开,继上篇<用Tcl定制Vivado设计实现流程>介绍了如何扩展甚至是定制FPGA设计实现流程后,引出了一个 ...
- MySQL-索引工作原理及使用注意事项
1.为什么需要索引(Why is it needed)? 当数据保存在磁盘类存储介质上时,它是作为数据块存放.这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性.硬盘数据块存储结构类似于链表 ...
- ELK简单使用
原作者:http://www.cnblogs.com/snidget/p/6269383.html ELK ELK是什么? Elasticsearch LogStash Kibana 1,简单 ...
- PHP取整函数ceil,floor,round,intval的区别
ceil — 进一法取整 float ceil ( float $value ) 返回不小于 value 的下一个整数,value 如果有小数部分则进一位.ceil() 返回的类型仍然是 float, ...
- Linux下如何创建新用户
Linux下如何创建新用户 Linux系统中,只有root用户有创建其他用户的权限.创建过程如下: useradd -d /home/newuser newuser(设定了该用户的主目录和用户名) ...
- JAVA封装消息中间件调用一(kafka生产者篇)
这段时间因为工作关系一直在忙于消息中间件的发开,现在趁着项目收尾阶段分享下对kafka的一些使用心得. kafka的原理我这里就不做介绍了,可参考http://orchome.com/kafka/in ...
- 完美解决doc、docx格式word转换为Html
http://blog.csdn.net/renzhehongyi/article/details/48767597
- day6 random随机数模块
random 我们经常看到网站的随机验证码,这些都是由随机数生成的,因此我们需要了解一下随机数的模块.如何生成随机数. random 生成随机数 random.random() 生成0- ...