求\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}d(ij)\)

不知道怎么讲.....

首先考虑\(d(ij)\)究竟是什么

首先,很自然地想到,既然是求\(ij\)的约数个数

因此就枚举\(i,j\)的约数

即\(d(ij) =\sum\limits_{x|i}\sum\limits_{y|j}...\)

注意到,我们不能重复地统计

我们从唯一分解得形式来考虑

因为多个质因子个和一个质因子的情况是一致的

因此我们考虑一个质因子

假设\(i = p^a, j = p^b\)且\(a\leq b\)

那么对于\(ij = p^{a+b}\),它的约数中质因子的取值范围为\([0,\;\;a+b]\)

如果我们能制定一种规则使得每个质因子取值只与一种\(i,j\)的质因子方案对应就好了

记当前枚举的\(ij\)约数为\(d\),且\(d = p^c = p^{a'+b'}\),其中\(a'\)来源于\(i\),\(b'\)来源于\(j\)

注意到,对于\([0,\;\;b]\),我们都可以只让\(a' = 0, b' = [0,b]\)来达到

而\([b+1,\;\;a+b]\),我们可以只让\(a'=[1,a], b' = b\)来达到

而\(b'=b\)相当于\(b'=0\)(枚举因子的特殊性)

也就是说\(a'=0\)或\(b'=0\)时对应一种情况

也就是只要判断\([gcd(i, j)=1]\)即可

因此\(d(ij) = \sum\limits_{x|i}\sum\limits_{y|j} [gcd(x, y)=1]\)

那么,简单地化下式子,答案就能出现

$\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} d(ij) = \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} \sum\limits_{x|i} \sum\limits_{y|j} [gcd(x, y)=1] $

\(=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} \sum\limits_{x|i} \sum\limits_{y|j} \sum\limits_{d|x \;and \;d|y} \mu(d)\)

注意到,我们如果先枚举\(d\),相当于枚举它的倍数\(i, j\),再枚举\(i, j\)内有多少数含\(d\)因子

\(=\sum\limits_{d=1}^{min(n,m)} \mu(d)\sum\limits_{d|i}^{n} \sum\limits_{d|j}^{m} [n/ d][m/d]\)

预处理\(\mu\)以及某个神奇的函数就可以回答了

[SDOI2015]约数个数和 --- 简单反演的更多相关文章

  1. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  2. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  3. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  4. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  5. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  6. BZOJ3994: [SDOI2015]约数个数和(莫比乌斯反演)

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Out ...

  7. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

  8. [SDOI2015]约数个数和 莫比乌斯反演

    ---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...

  9. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

随机推荐

  1. Sublime之快捷键(二)

    1. 在使用Sublime的时候,经常用到选中文件中相同的一些字段,那怎么办呢? 快捷键: ctrl + d 可以快速的选择,你所选中的文字,每次按下该快捷键,就会自动的寻找相同的字段: Alt + ...

  2. JavaScript三种绑定事件的方式

    JavaScript三种绑定事件的方式: 1. <div id="btn" onclick="clickone()"></div> // ...

  3. three.js轨道控制器OrbitControls.js

    https://blog.csdn.net/qq_37338983/article/details/78575333 文章地址

  4. 阿里Java研发工程师实习面经,附面试技巧

    作者:如何进阿里 链接:https://www.nowcoder.com/discuss/72899?type=0&order=0&pos=17&page=1 来源:牛客网 前 ...

  5. gmail注册时“此电话号码无法用于进行验证”

    网上有几个方法,有说不要改默认地点,有说验证时直接写+86手机号,试了以后还是不行. 我的方法:换成IE浏览器,就可以验证了.

  6. go标识符、变量、常量

    标识符 标识符是用来表示Go中的变量名或者函数名,以字母或_开头.后可跟着字母.数字. _ 关键字 关键字是Go语言预先定义好的,有特殊含义的标识符. 变量 1. 语法:var identifier ...

  7. java-String中的 intern()

    1. 首先String不属于8种基本数据类型,String是一个对象. 因为对象的默认值是null,所以String的默认值也是null:但它又是一种特殊的对象,有其它对象没有的一些特性. 2. ne ...

  8. ORACLE数据库导出导入数据

    准备工作: 1.登录管理员system 2.create directory dbdata as 'C:\oracle\tempData';--创建备份文件夹 3.grant read,write o ...

  9. Spring Cloud Feign 输出日志

    还需要在application 文件中配置: #feign调用日志输出logging.level.cn.XXX=DEBUG Logger.Level下面有几种级别. BASIC : 只输出 请求URL ...

  10. Zabbix3.0 API调用

    Zabbix API 是什么? API简单来说是服务对外开放的一个接口,用户通过该接口传递请求,完成操作.API的背后是一组方法的集合,这些方法实现了服务对应的不同功能,调用API实际上就是换了一种方 ...