GPU的功耗远远超过CPU
Cache, local memory: CPU > GPU
Threads(线程数): GPU > CPU
Registers: GPU > CPU 多寄存器可以支持非常多的Thread,thread需要用到register,thread数目大,register也必须得跟着很大才行。
SIMD Unit(单指令多数据流,以同步方式,在同一时间内执行同一条指令): GPU > CPU。

在计算机上运行的程序从性能的角度来说大致可分为三类:
(1) I/O intensive;
(2) Memory intensive
(3) Compute-intensive。
  (1)I/O intensive的程序其性能瓶颈是I/O,也就是说程序运行的大部分时间花在了硬盘读写/网络通信上,而I/O处在计算机体系结构金字塔的最底层,速度非常慢。最近炒的很火的big data 讨论的就是这一类应用程序。几百TB 甚至到PB级别的数据往哪搁,只能放在硬盘上。一台机器容量太小CPU太少怎么办,搞几百台甚至上千台机器用网线连起来分布处理。所以这块全是I/O, 现在大的互联网公司不多搞几个上千节点的集群肯定撑不住。
  (2)Memory intensive的程序其性能瓶颈在内存访问,程序中有大量的随机访问内存的操作,但是基本没有I/O, 这类程序已经比第一类程序快一个数量级了,但是和寄存器的速度还是没法比。目前大部分应用程序都属于这类。个人电脑里装的的各种软件基本就是这类,如果有点I/O, 立刻就会非常得卡。
以上提到的这两类程序的应用最广泛,涵盖了大部分有用的计算机软件,但遗憾的是GPU在这两块毫无用处, GPU只有在计算密集型的程序有些作用。I/O是瓶颈的程序,花在计算的时间可以忽略不计,再怎么用GPU加速也没用。 含有大量内存随机访问的程序也不适合在GPU上执行,大量的随机访问甚至可以使GPU的行为由并行变为串行。
什么类型的程序适合在GPU上运行?
  (1)计算密集型的程序。所谓计算密集型(Compute-intensive)的程序,就是其大部分运行时间花在了寄存器运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。可以做一下对比,读内存的延迟大概是几百个时钟周期;读硬盘的速度就不说了,即便是SSD, 也实在是太慢了。
  (2)易于并行的程序。GPU其实是一种SIMD(Single Instruction Multiple Data)架构, 他有成百上千个核,每一个核在同一时间最好能做同样的事情。
  满足以上两点,就可以用GPU做运算了。 不过你还得先用CUDA或者Open CL 把能在GPU上运行的程序写出来, 这也是很麻烦的,写一下就知道了。 而且GPU的架构比较特殊,要想写出高效率的程序,要花很多很多时间。笔者想说写GPU程序是一件很蛋疼的事情。
  GPU在某些地方很有用,但应用面比较窄,远远没有某公司声称的那么有用。当今还是Intel的天下, 现在计算机的速度已经很快了,计算其实已经不是什么大问题。I/O才是最需要解决的问题。 记得曾经看过N家的GTC峰会,黄某人吹得神乎其神,连笔者都被感动了,多少多少T FLOPS的计算速度。 程序运行时间从100 秒 变成 1秒 其实没多重要,你倒杯水的功夫就100秒了。运行时间从100天缩短到1天才是大贡献。 前者就是GPU做的事情,后者才是我们真正需要的。

gpu:数量大,计算简单,重复多次
cpu :数量不那么大,计算复杂,重复性低

gpu和cpu区别的更多相关文章

  1. GPU与CPU的区别

    作者:虫子君 链接:https://www.zhihu.com/question/19903344/answer/96081382 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...

  2. 聊聊GPU与CPU的区别

    目录 前言 CPU是什么? GPU是什么? GPU与CPU的区别 GPU的由来 并行计算 GPU架构优化 GPU和CPU的应用场景 作者:小牛呼噜噜 | https://xiaoniuhululu.c ...

  3. GPU、CPU的异同

    一.概念 CPU(Center Processing Unit)即中央处理器,GPU(Graphics Processing Unit)即图形处理器. 二.CPU和GPU的相同之处 两者都有总线和外界 ...

  4. GPU与CPU

    GPU与CPU CPU CPU,也就是中央处理器,结构主要包括控制器(指挥各部分工作).运算器(实现数据加工).寄存器.高缓以及数据/控制/状态总线.计算机的性能很大程度上依赖于CPU,CPU的功能包 ...

  5. 使用PCAST检测散度以比较GPU和CPU结果

    使用PCAST检测散度以比较GPU和CPU结果 并行编译器辅助软件测试(PCAST)是英伟达HPC FORTRAN.C++和C编译器中的一个特性.PCAST有两个用例.一个新的处理器或新的编译程序的部 ...

  6. 【转】GPU 与CPU的作用协调,工作流程、GPU整合到CPU得好处

    在不少人的心目中,显卡最大的用途可能就只有两点--玩游戏.看电影,除此之外,GPU并没有其他的作用了.但是随着微软IE9的正式发布,不少人突然发现,微软一直提到一个名词:GPU硬件加速,从而也让不少人 ...

  7. GPU 与CPU的作用协调,工作流程、GPU整合到CPU得好处

    http://blog.csdn.net/maopig/article/details/6803141 在不少人的心目中,显卡最大的用途可能就只有两点——玩游戏.看电影,除此之外,GPU并没有其他的作 ...

  8. YOLO---Darknet下的 GPU vs CPU 速度

    YOLO---Darknet下的 GPU vs CPU 速度 目录 一.基础环境 二.安装Darknet-yolo v3 三.CPU下测试 四.GPU下测试 五.测试速度对比结论 正文 一.基础环境 ...

  9. [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题

    [深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...

随机推荐

  1. 「Ionic」WebStorm的使用錯誤-

    前言:遇到這個錯誤,不要慌張,搶按照濤叔下面的方式處理就可以了. 1.Couldn't find ionic.config.json file. Are you in an Ionic project ...

  2. hadoop环境安装及错误总结

    历时N天的hadoop环境,终于配好了 主要参考 Hadoop集群安装配置教程_Hadoop2.6.0_Ubuntu/CentOS 1.开机默认进入字符界面或者是图形界面:http://blog.cs ...

  3. C# HTML 生成 PDF

    原文出处:http://www.cnblogs.com/shanyou/archive/2012/09/07/2676026.html

  4. lr总结

    最近一直在用Loardrunner做性能测试,记录下自己在工作中遇到的问题. LR的基本设置 首先是录制,在录制前选择TOOLS-recording options 在General中选择record ...

  5. 使用Unity解耦你的系统—PART4——Unity&PIAB

    在前面几篇有关Unity学习的文章中,我对Unity的一些常用功能进行介绍,包括:Unity的基本知识.管理对象之间的关系.生命周期.依赖注入等,今天则是要介绍Unity的另外一个重要功能——拦截(I ...

  6. java 可变参数讲解

    java5中新增了可变参数,这个可变参数和C语言中的用法是差不多,但实现起来却不一样. 下面我们一起来看看吧. 其实可变参数就是一个数组 class A{ public void func(int.. ...

  7. Android之 内容提供器(1)——使用内容提供器访问其它程序共享的数据

    (下面内容是阅读郭霖大神的<第一行代码>总结的) 1 概述 内容提供器是Android实现跨程序共享数据的标准方式. 内容提供器的的使用方法有两种, 一是使用已有的内容提供器对其他程序的数 ...

  8. String 字符串补0

    method1: 前提是你的长度已经确定!比如规定现实10位! - 优点: 不需要都是数字类型    String str_m =  "123X";  String str =&q ...

  9. Failed to resolve directive: el vue2报错

    vue2报错 Failed to resolve directive: el 为什么会报这个错呢,主要还是因为vue升级的时候,v-el在vue2.x以后被淘汰.使用新的标签ref替换v-el,接下来 ...

  10. Appium robotframework-appium (ios 客户端测试)环境搭建

    一. 简介 1.1摘要 本人测试新人,最近在搞ios客户端的自动化,准备采用robotframework-appium来实现自动化测试,一边学习一边总结,此安装说明文档是基于mac系统10.11版本, ...