上一节讲的三叶结,举一反三,由三可到无穷,这一节讲N叶结

再次看下三叶结的公式:

x = sin(t) + 2*sin(2*t)
y = cos(t) - 2*cos(2*t)

将其改为:

x = sin(t) + 2*sin((n-1)*t)
y = cos(t) - 2*cos((n-1)*t)

就变成了N叶结了,如此简单.

N叶结:

vertices = 

t = from  to (*PI)

n = rand_int2(, )

x = sin(t) + *sin(n*t - t)
y = cos(t) - *cos(n*t - t)
z = -sin(n*t) r = ;
x = x*r
y = y*r
z = z*r

另一种写法:

vertices = 

t = from  to (*PI)

n = rand_int2(, )

x = ( + cos(n*t))*cos((n - )*t)
y = ( + cos(n*t))*sin((n - )*t)
z = sin(n*t) r =
x = x*r
y = y*r
z = z*r

四叶结

#http://www.mathcurve.com/courbes3d/noeuds/noeuddetrefle.shtml

vertices = 

t = from  to (*PI)

r = ;
x = r*(cos(t) + *cos(*t))
z = r*(sin(t) - *sin(*t))
y = r*sin(*t)

数学图形(2.2)N叶结的更多相关文章

  1. 数学图形(1.20)N叶草

    有N个叶子的草 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 vertices = t = to (*PI) r = n ...

  2. 数学图形(2.26) 3D曲线结

    我收集的几种曲线结 knot(huit) #http://www.mathcurve.com/courbes3d/noeuds/noeudenhuit.shtml vertices = 1000 t ...

  3. WHY数学图形可视化工具(开源)

    WHY数学图形可视化工具 软件下载地址:http://files.cnblogs.com/WhyEngine/WhyMathGraph.zip 源码下载地址: http://pan.baidu.com ...

  4. 数学图形(1.49)Nephroid曲线

    昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...

  5. 数学图形(1.48)Cranioid curve头颅线

    这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生 ...

  6. 数学图形之贝塞尔(Bézier)曲面

    前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的 ...

  7. 数学图形(1.47)贝塞尔(Bézier)曲线

    贝塞尔曲线又称贝兹曲线或贝济埃曲线,是由法国数学家Pierre Bézier所发现,由此为计算机矢量图形学奠定了基础.它的主要意义在于无论是直线或曲线都能在数学上予以描述. 上一节讲的是高次方程曲线, ...

  8. 数学图形之Breather surface

    这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释. In differential equations, a breather surface is a mathematical surface ...

  9. 数学图形之Kuen Surface

    Kuen Surface应该又是一个以数学家名字命名的曲面.本文将展示几种Kuen Surface的生成算法和切图,其中有的是标准的,有的只是相似.使用自己定义语法的脚本代码生成数学图形.相关软件参见 ...

随机推荐

  1. [loj2116]「HNOI2015」开店 动态点分治

    4012: [HNOI2015]开店 Time Limit: 70 Sec  Memory Limit: 512 MBSubmit: 2452  Solved: 1089[Submit][Status ...

  2. bzoj 1854 并查集 + 贪心

    思路:这个题的并查集用的好NB啊, 我们把伤害看成图上的点,武器作为边,对于一个联通块来说, 如果是一棵大小为k的树,那么这个联通块里面有k - 1个伤害能被取到,如果图上有环那么k个值都能 取到,对 ...

  3. Django学习笔记-2018.11.16

    知识储备: 1 Python基础 2 数据库SQL 3 HTTP协议 4 HTML&&CSS 5 正则表达式 Django启动 django-admin startproject pr ...

  4. 【JAVAWEB学习笔记】网上商城实战1:环境搭建和完成用户模块

    今日任务 完成用户模块的功能 1.1      网上商城的实战: 1.1.1    演示网上商城的功能: 1.1.2    制作目的: 灵活运用所学知识完成商城实战. 1.1.3    数据库分析和设 ...

  5. 详细理解Java虚拟机的运行过程

    基本概述: Java虚拟机简称JVM,是JRE中的一部分,也是Java程序运行的最关键的部分.完整的Java运行流程大致包括编译.java文件形成.class文件,然后根据.class文件的内容进行一 ...

  6. 简单了解Linux的inode与block

    Linux常见文件系统类型:ext3(CentOS5),ext4(CentOS6),xfs(CentOS7) Windows常见文件系统类型:FAT32,NTFS (1).inode的内容 1)ino ...

  7. Elasticsearch 删除索引下的所有数据

    下面是head中操作的截图 #清空索引 POST quality_control/my_type/_delete_by_query?refresh&slices=5&pretty { ...

  8. FastReport.Net使用:[24]其他控件(邮政编码(Zip Code),网格文本(Cellular Text)以及线性刻度尺(Linear Gauge))

    邮政编码(Zip Code) Zip Code仅支持数字(0~9) Zip Code支持数据列绑定,表达式,文本等模式 可通过修改SegmentCount属性的值来确定Zip Code的位数. 数字右 ...

  9. SQL Server附加数据库提示“版本为661,无法打开,支持655版本……”

    在我们使用别人导出的数据库的时候,有时候我们会通过附加数据库的方法,把别人导出的数据库附加到我们的电脑中,这时,或许你会遇到这种问题,附加时,提示版本为XXX,无法打开,支持AAA版本. 这是怎么回事 ...

  10. luoguP4284 [SHOI2014]概率充电器 概率期望树形DP

    这是一道告诉我概率没有想象中那么难的题..... 首先,用期望的线性性质,那么答案为所有点有电的概率和 发现一个点的有电的概率来源形成了一个"或"关系,在概率中,这并不好计算... ...