题目链接

环形均分纸牌。

设平均数为\(ave\),\(g[i]=a[i]-ave\),\(s[i]=\sum_{j=1}^ig[i]\)。

设\(s\)的中位数为\(s[k]\),则答案为\(\sum |s[i]-s[k]|\)

博主太菜,无法给出证明。

#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 1000010;
long long sum, ans, a[MAXN], s[MAXN];
int n;
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%lld", &a[i]), sum += a[i];
sum /= n;
for(int i = 1; i <= n; ++i){
a[i] -= sum; s[i] = s[i - 1] + a[i];
}
sort(s + 1, s + n + 1);
for(int i = 1; i <= n; ++i)
ans += abs(s[i] - s[n / 2 + 1]);
printf("%lld\n", ans);
return 0;
}

【洛谷 P2512】 [HAOI2008]糖果传递(贪心)的更多相关文章

  1. [bzoj1045] [洛谷P2512] [HAOI2008] 糖果传递

    Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数nn<=1'000'000,表示小朋友的个 ...

  2. 洛谷 P2512 [HAOI2008]糖果传递 题解

    每日一题 day47 打卡 Analysis 首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示. 假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小 ...

  3. 洛谷P2512 [HAOI2008]糖果传递

    //不开long long见祖宗!!! #include<bits/stdc++.h> using namespace std; long long n,ans,sum; ],s[]; i ...

  4. P2512 [HAOI2008]糖果传递&&P3156 [CQOI2011]分金币&&P4016 负载平衡问题

    P2512 [HAOI2008]糖果传递 第一步,当然是把数据减去平均数,然后我们可以得出一串正负不等的数列 我们用sum数组存该数列的前缀和.注意sum[ n ]=0 假设为链,那么可以得出答案为a ...

  5. 【BZOJ1045】[HAOI2008] 糖果传递 贪心

    [BZOJ1045][HAOI2008] 糖果传递 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正 ...

  6. bzoj 1045: [HAOI2008] 糖果传递 贪心

    1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1812  Solved: 846[Submit][Stat ...

  7. P2512 [HAOI2008]糖果传递

    题目描述 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. 输入输出格式 输入格式: 小朋友个数n 下面n行 ai 输出格式: 求使所有人获得均等糖果 ...

  8. Luogu-P2512 [HAOI2008]糖果传递 贪心

    传送门:https://www.luogu.org/problemnew/show/P2512 题意: 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1 ...

  9. [BZOJ1045] [HAOI2008] 糖果传递 (贪心)

    Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n<=,表示小朋友的个数.接下来n行,每行 ...

  10. bzoj 1045 [HAOI2008] 糖果传递 —— 贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1045 好像是贪心...但这是一个环... 看博客:http://hzwer.com/2656 ...

随机推荐

  1. mac python install zlib not available

    用brew install 3.4.4(python)时报 zipimport.ZipImportError: can't decompress data; zlib not available 的错 ...

  2. 数组去重复及记录重复个数(以及遍历map的四种方法)

    private static void check(String[] array) { // 字符串数组中,含有不重复的字符串有哪些?每一个重复的个数 Map<String,Integer> ...

  3. jmeter链接多台负载机报错

    遇到常见的问题: 1.在Controller端上控制某台机器Run,提示“Bad call to remote host” 解决方案:检查被控制机器上的jmeter-server有没有启动,或者JMe ...

  4. 插件-监控页面加载之loading

    查看效果点https://icedjuice.github.io/plug-in/loading/loading.html 简单易用的loading插件,该插件并不是真正的监控页面的资源加载过程,而是 ...

  5. C++解析(24):抽象类和接口、多重继承

    0.目录 1.抽象类和接口 1.1 抽象类 1.2 纯虚函数 1.3 接口 2.被遗弃的多重继承 2.1 C++中的多重继承 2.2 多重继承的问题一 2.3 多重继承的问题二 2.4 多重继承的问题 ...

  6. Golang的第一个程序-Hello, World !

    安装Golang: 1. 下载安装包 https://golang.google.cn/dl/ 我这里使用压缩包,下载后解压到D盘(自定义). 2. 添加环境变量:把解压后的bin目录添加到环境变量中 ...

  7. "XX cannot be resolved to a type "eclipse报错及解决

    好久都没有写博了,还记得自己准备考研,结果你会发现——你永远不知道,你将会走上哪个路. 长远的目标是好的,但有些时候身不由己也迫不得已!做好自己的当下就是好的. 不论搞什么,总会遇到各种各样的问题,以 ...

  8. 利用Runloop优化流畅度

    我们可以对runloop添加观察者,当观察到状态为kCFRunLoopExit,kCFRunLoopBeforeWaiting的时候,做一些耗时的处理,废话不说,直接上代码 - (void)viewD ...

  9. linux内核设计与实现第七周读书笔记

    第七章 链接 链接(linking)是将各种代码和数据部分收集起来并组合成为一个单一文件的过程,这个文件可被加载(或被拷贝)到存储并执行.链接可以执行于编译时(compile time),也就是在源代 ...

  10. 解题:ZJOI 2014 力

    题面 事实说明只会FFT板子是没有用的,还要把式子推成能用FFT/转化一下卷积的方式 虽然这个题不算难的多项式卷积 稍微化简一下可以发现实际是$q_i$和$\frac{1}{(i-j)^2}$在卷,然 ...