HDU 1166 敌兵布阵 (树状数组 单点修改+区间查询)
Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output
Case 1:
6
33
59
分析
这道题可以用线段树来解,只需把区间求最大值得那个代码稍加改动就行。
这里主要讲树状数组的写法,简单的树状数组的单点修改+区间查询的模板:
代码:
#include<bits/stdc++.h>
using namespace std;
const int MAX=50000+50;
int a[MAX];
int c[MAX];
int lowbit(int x)
{
return x&(-x);
}
void build(int n)
{
for (int i=1; i<=n; i++)
for (int j=i; j>=i-lowbit(i)+1; j--)
c[i]+=a[j];
}
int SUM(int n)
{
int sum=0;
for (int i=n; i>0; i-=lowbit(i))
sum+=c[i];
return sum;
}
void update(int id,int value,int n)
{
for (int i=id; i<=n; i+=lowbit(i))
c[i]+=value;
}
int main()
{
int T,k=1;
scanf("%d",&T);
while (k<=T)
{
memset(a,0,sizeof(a));
memset(c,0,sizeof(c));
int n;
scanf("%d",&n);
for (int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
}
build(n);
char c[10];
int a,b;
printf("Case %d:\n",k);
while (1)
{
scanf(" %s",c);
if (strcmp(c,"End")==0)
break;
scanf("%d%d",&a,&b);
if (strcmp(c,"Query")==0)
{
printf("%d\n",SUM(b)-SUM(a-1));
}
else if (strcmp(c,"Add")==0)
{
update(a,b,n);
}
else if (strcmp(c,"Sub")==0)
{
update(a,-1*b,n);
}
}
k++;
}
return 0;
}
HDU 1166 敌兵布阵 (树状数组 单点修改+区间查询)的更多相关文章
- HDU 1166 敌兵布阵 树状数组||线段树
http://acm.hdu.edu.cn/showproblem.php?pid=1166 题目大意: 给定n个数的区间N<=50000,还有Q个询问(Q<=40000)求区间和. 每个 ...
- HDU 1166 敌兵布阵(树状数组)
之前用过了线段树的做法,树状数组的也补上吧 #include<iostream> #include<cstdio> #include<cstring> using ...
- HDU 1166 敌兵布阵 树状数组小结(更新)
树状数组(Binary Indexed Tree(BIT), Fenwick Tree) 是一个查询和修改复杂度都为log(n)的数据结构.主要用于查询任意两位之间的所有 元素之和,但是每次只能修改一 ...
- HDU 1166 敌兵布阵 (数状数组,或线段树)
题意:... 析:可以直接用数状数组进行模拟,也可以用线段树. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000&quo ...
- hdoj 1166 敌兵布阵(树状数组)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 思路分析:该问题为动态连续和查询问题,使用数组数组可以解决:也可使用线段树解决该问题: 代码如下 ...
- HDU1166 敌兵布阵(树状数组)
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况.由于 ...
- hdu1166 敌兵布阵 树状数组/线段树
数列的单点修改.区间求和 树状数组或线段树入门题 #include<stdio.h> #include<string.h> ],N; void add(int x,int a) ...
- hdu-1166 敌兵布阵---树状数组模板
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1166 题目大意: 维护动态的区间和,单点更新,就是模板题 #include<iostream& ...
- HDU-1166 敌兵布阵 (树状数组模板题——单点更新,区间求和)
题目链接 AC代码: #include<iostream> #include<cstdio> #include<cstring> #include<algor ...
随机推荐
- 【第一周】c++实现词频统计
coding.net地址:https://coding.net/u/Boxer_ ssh:git@git.coding.net:Boxer_/homework.git ---------------- ...
- EasyUI中DataGrid构建复合表头
在使用easyui的DataGrid控件时,构建复合表头就显得非常简单了.只需要在使用columns属性时通过数组的方式编写列名即可.如我们需要构建成一个如下的表头: Columns的代码如下: co ...
- C# 事件总线 EventBus
1. 引言 事件总线这个概念对你来说可能很陌生,但提到观察者(发布-订阅)模式,你也许就很熟悉.事件总线是对发布-订阅模式的一种实现.它是一种集中式事件处理机制,允许不同的组件之间进行彼此通信而又不需 ...
- 10个linux网络和监控命令
我下面列出来的10个基础的每个linux用户都应该知道的网络和监控命令.网络和监控命令类似于这些: hostname, ping, ifconfig, iwconfig, netstat, nsloo ...
- apache server-status配置
引言 自己配置LAMP服务器时(xwamp),获取状态信息出现错误: You don't have permission to access /server-status on this server ...
- 【Python】python操作mysql
pymysql模块对mysql进行 import pymysql # 创建连接 conn = pymysql.connect(host=, user='root', passwd='root', db ...
- 【bzoj3125】CITY 插头dp
题目描述 给出一个n*m的矩阵,某些格子不能通过,某些格子只能上下通过或左右通过.求经过所有非不能通过格子的哈密顿回路条数. 输入 第一行有两个数N, M表示地图被分割成N*M个块,接下来有N行,每行 ...
- 【转载】Java中的锁机制 synchronized & 偏向锁 & 轻量级锁 & 重量级锁 & 各自优缺点及场景 & AtomicReference
参考文章: http://blog.csdn.net/chen77716/article/details/6618779 目前在Java中存在两种锁机制:synchronized和Lock,Lock接 ...
- WildFly8(JBoss)默认web服务器-------Undertow
Java微服务框架之Undertow 一.Undertow简介: Undertow 是红帽公司(RedHat)的开源产品,是 WildFly8(JBoos) 默认的 Web 服务器. 官网API给出一 ...
- 洛谷 P3373 【模板】线段树 2 解题报告
P3373 [模板]线段树 2 题目描述 如题,已知一个数列,你需要进行下面三种操作: 1.将某区间每一个数乘上\(x\) 2.将某区间每一个数加上\(x\) 3.求出某区间每一个数的和 输入输出格式 ...