BZOJ - 3744 Gty的妹子序列 (区间逆序对数,分块)
静态区间逆序对数查询,这道题用线段树貌似不好做,可以把区间分成$\sqrt n$块,预处理出两个数组:$sum[i][j]$和$inv[i][j]$,$sum[i][j]$表示前i个块中小于等于j的数的个数,$inv[i][j]$表示第i块与第j块之间的逆序对数,递推搞一下就行。查询的时候中间的部分直接查询,两边多出来的部分暴力计算贡献即可。总复杂度$O(n\sqrt nlogn)$
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e4+,sqrtN=,inf=0x3f3f3f3f;
int a[N],b[N],c[N],n2,in[N],L[sqrtN],R[sqrtN],n,m,sqrtn,nb;
int sum[sqrtN][N],inv[sqrtN][sqrtN];
void add(int u,int x) {for(; u<=n2; u+=u&-u)c[u]+=x;}
int get(int u) {int ret=; for(; u; u-=u&-u)ret+=c[u]; return ret;}
int main() {
scanf("%d",&n),sqrtn=sqrt(n+0.5);
for(int i=; i<=n; ++i)scanf("%d",&a[i]);
for(int i=; i<=n; ++i)b[i-]=a[i];
sort(b,b+n),n2=unique(b,b+n)-b;
for(int i=; i<=n; ++i)a[i]=lower_bound(b,b+n2,a[i])-b+;
for(int i=; i<=n; ++i) {nb=in[i]=i/sqrtn+; if(!L[in[i]])L[in[i]]=i; R[in[i]]=i;}
for(int i=; i<=nb; ++i) {
for(int j=L[i]; j<=R[i]; ++j)sum[i][a[j]]++;
for(int j=; j<=n; ++j)sum[i][j]+=sum[i][j-];
for(int j=; j<=n; ++j)sum[i][j]+=sum[i-][j];
}
for(int i=; i<=nb; ++i) {
for(int j=R[i]; j>=L[i]; --j)inv[i][i]+=get(a[j]-),add(a[j],);
for(int j=R[i]; j>=L[i]; --j)add(a[j],-);
}
for(int i=; i<=nb; ++i)
for(int j=i+; j<=nb; ++j) {
for(int k=L[j]; k<=R[j]; ++k)inv[i][j]+=(R[j-]-L[i]+)-(sum[j-][a[k]]-sum[i-][a[k]]);
inv[i][j]+=inv[i][j-]+inv[j][j];
}
scanf("%d",&m);
for(int ans=; m--;) {
int l,r;
scanf("%d%d",&l,&r),l^=ans,r^=ans,ans=;
if(in[l]==in[r]) {
for(int i=r; i>=l; --i)ans+=get(a[i]-),add(a[i],);
for(int i=r; i>=l; --i)add(a[i],-);
} else {
int lb=in[l]+,rb=in[r]-;
if(lb<=rb) {
ans+=inv[lb][rb];
for(int i=r; i>=L[in[r]]; --i)ans+=(R[rb]-L[lb]+)-(sum[rb][a[i]]-sum[lb-][a[i]]);
for(int i=R[in[l]]; i>=l; --i)ans+=sum[rb][a[i]-]-sum[lb-][a[i]-];
}
for(int i=r; i>=L[in[r]]; --i)ans+=get(a[i]-),add(a[i],);
for(int i=R[in[l]]; i>=l; --i)ans+=get(a[i]-),add(a[i],);
for(int i=r; i>=L[in[r]]; --i)add(a[i],-);
for(int i=R[in[l]]; i>=l; --i)add(a[i],-);
}
printf("%d\n",ans);
}
return ;
}
BZOJ - 3744 Gty的妹子序列 (区间逆序对数,分块)的更多相关文章
- bzoj 3744 Gty的妹子序列 区间逆序对数(在线) 分块
题目链接 题意 给定\(n\)个数,\(q\)个询问,每次询问\([l,r]\)区间内的逆序对数. 强制在线. 思路 参考:http://www.cnblogs.com/candy99/p/65795 ...
- bzoj 3744: Gty的妹子序列 主席树+分块
3744: Gty的妹子序列 Time Limit: 15 Sec Memory Limit: 128 MBSubmit: 101 Solved: 34[Submit][Status] Descr ...
- BZOJ 3744 Gty的妹子序列 (分块 + BIT)
3744: Gty的妹子序列 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1931 Solved: 570[Submit][Status][Dis ...
- BZOJ 3744: Gty的妹子序列 【分块 + 树状数组 + 主席树】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=3744 3744: Gty的妹子序列 Time Limit: 20 Sec Memory ...
- BZOJ 3744 Gty的妹子序列
Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见-- 某天,蒟蒻Autumn发现了从 Gty的妹子树上掉落下来了许多妹子,他发现 她们排成了一个序 ...
- BZOJ 3744: Gty的妹子序列 [分块]
传送门 题意:询问区间内逆序对数 感觉这种题都成套路题了 两个预处理$f[i][j]$块i到j的逆序对数,$s[i][j]$前i块$\le j$的有多少个 f我直接处理成到元素j,方便一点 用个树状数 ...
- BZOJ 3744 Gty的妹子序列 (分块+树状数组+主席树)
题面传送门 题目大意:给你一个序列,多次询问,每次取出一段连续的子序列$[l,r]$,询问这段子序列的逆序对个数,强制在线 很熟悉的分块套路啊,和很多可持久化01Trie的题目类似,用分块预处理出贡献 ...
- BZOJ 3744 Gty的妹子序列 做法集结
我只会O(nnlogn)O(n\sqrt nlogn)O(nnlogn)的 . . . . 这是分块+树状数组+主席树的做法O(nnlogn)O(n\sqrt nlogn)O(nnlogn) 搬来 ...
- BZOJ 3744 Gty的妹子序列 分块+树状数组
具体分析见 搬来大佬博客 时间复杂度 O(nnlogn)O(n\sqrt nlogn)O(nnlogn) CODE #include <cmath> #include <cctyp ...
随机推荐
- POJ 1236 Network of School
http://poj.org/problem?id=1236 题意: 给出一个图,至少要选多少个点才能遍历全图和至少需要添加多少边使得整个图是强连通. 思路: 强连通计算连通分量后缩点,计算入度为0的 ...
- 使用js合并table中的单元格
用primefaces做的报表,领导要求合并相同内容的单元格,但是primefaces没有找到可以合并单元格的组件,想来想去,只有页面加载后用js合并了. http://blog.csdn.net/d ...
- eclipse创建文件package,source folder和folder区别及相互转换
原文:http://blog.csdn.net/u014079773/article/details/66973910 https://www.cnblogs.com/shihaiming/p/735 ...
- bootstrap自定义——栅格列数修改
从下载的bootstrap文件中找到less文件夹里面的variables.less,然后可以找到栅格列数进行修改 然后执行一下bootstrap.less,通过命令行,切换到其所在的目录D:\03 ...
- [Vue]使用axios实现ajax请求
1.定义myAjax export const myAjax=function createHttpClient(ajaxConfig) { let httpClient = null; if ...
- 记录selenium操作
# -*- coding: utf-8 -*- # coding:utf-8 必须在第一行才能支持中文注释 #!/usr/bin/python # android-build.py # Build a ...
- Highcharts 树状图(Treemap)
Highcharts 树状图(Treemap) 树状图 series 配置 设置 series 的 type 属性为 treemap ,series.type 描述了数据列类型.默认值为 " ...
- 奔跑吧ansible笔记一(概述)
1.普通用户想使用sudo到root用户下执行一些有root权限的操作需要在被管理机器上做如下操作 1.切换到root用户下,怎么切换就不用说了吧,不会的自己百度去. 2.添加sudo文件的写权限,命 ...
- 详解offset
offset offset 译为“偏移量”,是javascript很重要的一个概念.涉及到便宜量的主要有offsetLeft.offsetTop.offHeight.offsetWidth这四个属性还 ...
- BGP&RIP
策略路由是2000之前 如果不通检查是否有相互影响的策略 BGP 25端 查看 25是上端起lan 地址是172.100.1.254 互联158是下端起wan 172.100.1.158 25的内 ...