BuggyD loves to carry his favorite die around. Perhaps you wonder why it's his favorite? Well, his die is magical and can be transformed into an N-sided unbiased die with the push of a button. Now BuggyD wants to learn more about his die, so he raises a question:

What is the expected number of throws of his die while it has N sides so that each number is rolled at least once?

Input

The first line of the input contains an integer t, the number of test cases. t test cases follow.

Each test case consists of a single line containing a single integer N (1 <= N <= 1000) - the number of sides on BuggyD's die.

Output

For each test case, print one line containing the expected number of times BuggyD needs to throw his N-sided die so that each number appears at least once. The expected number must be accurate to 2 decimal digits.

Example

Input:
2
1
12 Output:
1.00
37.24

题意:

甩一个n面的骰子,问每一面都被甩到的次数期望是多少。

思路:

比较简单,公式:初始化dp[]=0;  dp[i]=i/n*dp[i]+(n-i)/n*dp[i+1]+1;  化简逆推即可。  求的是dp[0];

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<memory>
using namespace std;
double dp[];
int main()
{
int T,i,j,n;
scanf("%d",&T);
while(T--){
scanf("%d",&n); dp[n]=;
for(i=n-;i>=;i--) dp[i]=(dp[i+]*(n-i)/n+)*n/(n-i);
printf("%.2lf\n",dp[]);
} return ;
}

SPOJ Favorite Dice(数学期望)的更多相关文章

  1. SP1026 FAVDICE - Favorite Dice 数学期望

    题目描述: 一个n面的骰子,求期望掷几次能使得每一面都被掷到. 题解:先谈一下期望DP. 一般地,如果终止状态固定,我们都会选择逆序计算. 很多题目如果顺序计算会出现有分母为 0 的情况,而逆序计算中 ...

  2. HDU 4586 Play the Dice(数学期望)

    Play the Dice Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  3. 【HDU4652】Dice(数学期望,动态规划)

    [HDU4652]Dice(数学期望,动态规划) 题面 Vjudge 有一个\(m\)面骰子 询问,连续出现\(n\)个相同的时候停止的期望 连续出现\(n\)个不同的时候停止的期望 题解 考虑两种分 ...

  4. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  5. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  6. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  7. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  8. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  9. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  10. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

随机推荐

  1. geoserver源码学习与扩展——跨域访问配置

    在 geoserver源码学习与扩展——restAPI访问 博客中提到了geoserver的跨域参数设置,本文详细讲一下geoserver的跨域访问配置. geoserver的跨域访问依赖java-p ...

  2. hiho 有序01字符串 dp

    题目1 : 有序01字符串 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 对于一个01字符串,你每次可以将一个0修改成1,或者将一个1修改成0.那么,你最少需要修改多少 ...

  3. SEA 教程

    Sina App Engine(SAE)教程(11)- Yaf使用 Sina App Engine(SAE)入门教程(10)- Cron(定时任务)使用 Sina App Engine(SAE)入门教 ...

  4. slim(4621✨)

    用于代码瘦身. 老鸟建议:不要混写js 和 html,如果避免不了,当前文件可以改为erb格式,混用slim和erb不是什么问题. git:  https://github.com/slim-temp ...

  5. 设计模式--组合模式C++实现

    组合模式C++实现 1定义 将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性 2类图 角色分析 Component抽象构建角色 定义参加组合独享的共同方 ...

  6. 【转】 JavaScript:history.go() 的妙用(转) 处理post回发后返回

    在Web开发中,会遇到从一页(父页)导向另一页(子页),并且要求“返回”父页的情况,在这里如果用ASP.NET提供的 Response.Redirect()方法,往往不会达到理想的效果,例如:返回后, ...

  7. yii控制布局方式

    1:在控制器内成员变量设置 public $layout = false; //不使用布局 public $layout = “main”; //设置使用的布局文件 2:在控制器成员方法内设置 $th ...

  8. Ansible 小手册系列 九(Playbook)

    playbook是由一个或多个"play"组成的列表.play的主要功能在于将事先归并为一组的主机装扮成事先通过ansible中的task定义好的角色.从根本上来讲所谓task无非 ...

  9. Maven 环境搭建及相应的配置

    在一般的Java Web项目开发中,特别是基于Struts + hibernate + spring的框架的时候,会有很多的jar包,一般都会在项目文件中有一个lib文件夹,下面放所有相关的jar包. ...

  10. Quartz教程五:SimpleTrigger

    原文链接 | 译文链接 | 翻译:nkcoder 本系列教程由quartz-2.2.x官方文档翻译.整理而来,希望给同样对quartz感兴趣的朋友一些参考和帮助,有任何不当或错误之处,欢迎指正:有兴趣 ...