Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is
in the distribution list of school A, then A does not necessarily appear in the list of school B


You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

Source

题目大意:给定一个有向图,求至少要有多少个点, 才干从这些点出发到达全部点;至少要加入多少条边,才干从随意一点出发到达全部点

首先要推出一个定理:在DAG中,对于全部入度不为0的点,一定有入度为0的点可达(由于从入度为0的点倒着走,一定能走到入度不为0的点)

于是此题可用tarjan缩点,求有多少个入度为0的点,这就是第一个问题的答案。

第二个问题的答案为入度为0的点和出度为0的点的最小值。证明比較难。略。

对于这道题,由于仅仅要求入度和出度为0的点,故仅仅需在tarjan过程中记录每一个点归属哪个强连通分量。然后统计输出就可以

#include <iostream>
#include <stdio.h>
#include <string.h> #define MAXE 500
#define MAXV 3000 using namespace std; int N; struct edge
{
int u,v,next;
}edges[MAXV]; int head[MAXE],nCount=0;
int dfn[MAXE],low[MAXE],index=0;
int belong[MAXE],tot=0; //belong[i]=i点所属的强连通分量,tot=强连通分量总数
bool inStack[MAXE];
int stack[MAXE*4],top=0;
bool map[MAXE][MAXE];
int inDegree[MAXE],outDegree[MAXE],inZero=0,outZero=0; //入度。出度 int max(int a,int b)
{
if(a>b) return a;
return b;
} int min(int a,int b)
{
if(a<b) return a;
return b;
} void AddEdge(int U,int V)
{
edges[++nCount].u=U;
edges[nCount].v=V;
edges[nCount].next=head[U];
head[U]=nCount;
} void tarjan(int u)
{
dfn[u]=low[u]=++index;
stack[++top]=u; //该点入栈
inStack[u]=true;
for(int p=head[u];p!=-1;p=edges[p].next)
{
int v=edges[p].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(inStack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
int v;
if(dfn[u]==low[u])
{
tot++;
do
{
v=stack[top--];
belong[v]=tot;
inStack[v]=false;
}
while(u!=v);
}
} int main()
{
int to;
cin>>N;
memset(head,-1,sizeof(head));
for(int i=1;i<=N;i++)
{
while(1)
{
cin>>to;
if(to==0) break;
AddEdge(i,to);
map[i][to]=true;
}
}
for(int i=1;i<=N;i++)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
{
if(map[i][j]&&belong[i]!=belong[j])
{
inDegree[belong[j]]++;
outDegree[belong[i]]++;
}
}
for(int i=1;i<=tot;i++)
{
if(!inDegree[i]) inZero++;
if(!outDegree[i]) outZero++;
}
if(tot==1) cout<<1<<endl<<0<<endl;
else cout<<inZero<<endl<<max(inZero,outZero)<<endl;
return 0;
}



[POJ 1236][IOI 1996]Network of Schools的更多相关文章

  1. POJ 1236——Network of Schools——————【加边形成强连通图】

    Network of Schools Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u ...

  2. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  3. [tarjan] poj 1236 Network of Schools

    主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K To ...

  4. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  5. POJ 1236 Network of Schools (有向图的强连通分量)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9073   Accepted: 359 ...

  6. poj 1236 Network of Schools(连通图入度,出度为0)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  7. poj 1236 Network of Schools(tarjan+缩点)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

  8. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  9. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

随机推荐

  1. JPA入门样例(採用JPA的hibernate实现版本号)

    (1).JPA介绍: JPA全称为Java Persistence API ,Java持久化API是Sun公司在Java EE 5规范中提出的Java持久化接口.JPA吸取了眼下Java持久化技术的长 ...

  2. comgrid获取多选值

    var val = $('#cc').combobox('getValues');

  3. Orchard运用 - 定制呈现最新博客文章

    每个博客系统为了吸引更多访问量,一般都会在首页或侧边栏列举一些最新文章/随笔以获取更多点击.其实也就是查询出最新的几篇文章并按照简练的方式呈现,比如一般都只有标题及其对应的链接,有时也会标注一下作者和 ...

  4. Linux下Anaconda的安装使用与卸载及问题解决

    1. 安装 到官网下载对应的版本文件:Download Anaconda Now! 下载完之后,在终端输入: bash 下载好的文件 整个过程点几下回车就好了.但是到最后一步,会提示是否把anacon ...

  5. C++实现委托机制(一)

    1.引言: 如果你接触过C#,你就会觉得C#中的delegate(委托)十分灵巧,它的用法上和C\C++的函数指针很像,但是却又比C\C++的函数指针更加灵活.并且委托可以一对多,也就是可以注册多个函 ...

  6. win8自带输入法如何切换全角、半角操作流程

    原文参考:http://jingyan.baidu.com/article/066074d6620c45c3c21cb0d3.html 曾经不知道怎么切换半角全角的时候非常抓狂(原因是不知道是半角全角 ...

  7. MyEclipse中Ctrl+Shift+F快捷键格式化代码时不换行

    摘自: http://iteye.blog.163.com/blog/static/18630809620121166622410/ MyEclipse中Ctrl+Shift+F快捷键格式化代码时不换 ...

  8. React 同构思想

    作者:yangchunwen React比较吸引我的地方在于其客户端-服务端同构特性,服务端-客户端可复用组件,本文来简单介绍下这一架构思想. 出于篇幅原因,本文不会介绍React基础,所以,如果你还 ...

  9. STM32 控制GSM模块收发信息 F407 discovery

    main.c #include "stm32f4_discovery.h" #include <stdio.h> #define LED1_ON GPIO_SetBit ...

  10. idea maven 报-source 1.5 中不支持 diamond 运算符

    需要修改 project setting 中的