Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is
in the distribution list of school A, then A does not necessarily appear in the list of school B


You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

Source

题目大意:给定一个有向图,求至少要有多少个点, 才干从这些点出发到达全部点;至少要加入多少条边,才干从随意一点出发到达全部点

首先要推出一个定理:在DAG中,对于全部入度不为0的点,一定有入度为0的点可达(由于从入度为0的点倒着走,一定能走到入度不为0的点)

于是此题可用tarjan缩点,求有多少个入度为0的点,这就是第一个问题的答案。

第二个问题的答案为入度为0的点和出度为0的点的最小值。证明比較难。略。

对于这道题,由于仅仅要求入度和出度为0的点,故仅仅需在tarjan过程中记录每一个点归属哪个强连通分量。然后统计输出就可以

#include <iostream>
#include <stdio.h>
#include <string.h> #define MAXE 500
#define MAXV 3000 using namespace std; int N; struct edge
{
int u,v,next;
}edges[MAXV]; int head[MAXE],nCount=0;
int dfn[MAXE],low[MAXE],index=0;
int belong[MAXE],tot=0; //belong[i]=i点所属的强连通分量,tot=强连通分量总数
bool inStack[MAXE];
int stack[MAXE*4],top=0;
bool map[MAXE][MAXE];
int inDegree[MAXE],outDegree[MAXE],inZero=0,outZero=0; //入度。出度 int max(int a,int b)
{
if(a>b) return a;
return b;
} int min(int a,int b)
{
if(a<b) return a;
return b;
} void AddEdge(int U,int V)
{
edges[++nCount].u=U;
edges[nCount].v=V;
edges[nCount].next=head[U];
head[U]=nCount;
} void tarjan(int u)
{
dfn[u]=low[u]=++index;
stack[++top]=u; //该点入栈
inStack[u]=true;
for(int p=head[u];p!=-1;p=edges[p].next)
{
int v=edges[p].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(inStack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
int v;
if(dfn[u]==low[u])
{
tot++;
do
{
v=stack[top--];
belong[v]=tot;
inStack[v]=false;
}
while(u!=v);
}
} int main()
{
int to;
cin>>N;
memset(head,-1,sizeof(head));
for(int i=1;i<=N;i++)
{
while(1)
{
cin>>to;
if(to==0) break;
AddEdge(i,to);
map[i][to]=true;
}
}
for(int i=1;i<=N;i++)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
{
if(map[i][j]&&belong[i]!=belong[j])
{
inDegree[belong[j]]++;
outDegree[belong[i]]++;
}
}
for(int i=1;i<=tot;i++)
{
if(!inDegree[i]) inZero++;
if(!outDegree[i]) outZero++;
}
if(tot==1) cout<<1<<endl<<0<<endl;
else cout<<inZero<<endl<<max(inZero,outZero)<<endl;
return 0;
}



[POJ 1236][IOI 1996]Network of Schools的更多相关文章

  1. POJ 1236——Network of Schools——————【加边形成强连通图】

    Network of Schools Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u ...

  2. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  3. [tarjan] poj 1236 Network of Schools

    主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K To ...

  4. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  5. POJ 1236 Network of Schools (有向图的强连通分量)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9073   Accepted: 359 ...

  6. poj 1236 Network of Schools(连通图入度,出度为0)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  7. poj 1236 Network of Schools(tarjan+缩点)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

  8. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  9. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

随机推荐

  1. log4net配置详细说明

    1.web网站中创建log4net.config <?xml version="1.0" encoding="utf-8"?><configu ...

  2. WPF性能调试系列 – Ants Performance Profiler

    WPF性能调试系列文章: WPF页面渲染优化:Application Timeline WPF页面业务加载优化:Ants Performance Profiler WPF内存优化:Ants Memor ...

  3. JVM 虚拟机字节码指令表

    把JVM虚拟机字节指令表整理了一下,方便搜索,偶尔复习下 纯手工整理,可能存在一些问题,如果发现请及时告之我会修正 字节码 助记符 指令含义 0x00 nop None 0x01 aconst_nul ...

  4. @使用javap反编译Java字节码文件

    在Sun公司提供的JDK中,就已经内置了Java字节码文件反编译工具javap.exe(位于JDK安装目录的bin文件夹下). 我们可以在dos窗口中使用javap来反汇编指定的Java字节码文件.在 ...

  5. ActiveMQ使用示例之Topic

    非持久的Topic消息示例  对于非持久的Topic消息的发送基本跟前面发送队列信息是一样的,只是把创建Destination的地方,由创建队列替换成创建Topic,例如: Destination d ...

  6. 5 cocos2dx 3.0源码分析 渲染 render

    渲染,感觉这个挺重要了,这里代入一个简单的例子 Sprite 建立及到最后的画在屏幕上, 我们描述一下这个渲染的流程:   1 sprite 初始化(纹理, 坐标,及当前元素的坐标大小信息) 2 主循 ...

  7. html表格内容自动换行

    有时候表格会因为内容多少忽大忽小的很烦人,在网上搜了下解决方案,效果不错哦,给大家分享下!首先介绍两个利器:table-layout:fixed //固定表格大小word-break:break-al ...

  8. [AngularJS] Angular 1.3 $submitted for Form in Angular

    AngularJS 1.3 add $submitted for form, so you can use  $submitted  to track whether the submit event ...

  9. 根据Ip地址与掩码 得出 子网地址与广播地址

    由于给予条件优先,没有直接给出子网地址与广播地址.但是又需要这两个参数,需要我们使用ip 地址与 子网掩码得出子网地址与广播地址.思路如下:       1. 子网地址, ip地址与 子网掩码分别换算 ...

  10. C#应用视频教程1.1 Socket通信基础

    做Socket通信之前,我们首先要实现几个基本的功能 获取本机IP地址(如果我们要做Socket的服务器,肯定不希望用户每次填写本机IP地址,而是自动获取本机IP地址,这一点我们最好能做的比已有的软件 ...