1,宏定义,有参宏,无参宏,宏定义实现的是定义一个符号常量;

条件编译3种方式,文件包含含义;

不带参数的宏定义;既用一个指定的的标识符来代替一个字符串;
#define RUIY 10000000
把标识符定义为字符串,在进行编译预处理时,编译系统就能把程序中出现的标识符用字符串去替代,然后再对预处理后的程序进行编译;
与typedef 给系统中已存在的数据类型重新定义别名类似,但是是有区别的;
typedef char * String;
使用不带参数的宏定义 #include <stdio.h>
#define PI 3.1415926 int main(){
float s,r,v,l;
printf("Please input radius longs:");
scanf("%f",&r); }

2,宏名一般用大写,以便于变量加以区别;

使用宏名代替字符串可以提高程序的运行效率

宏名语句后不加分号;以便于通常的C语句区别开来;

宏名定义的有效范围为从定义处起到源程序文件的末尾;

可用#undef终止宏定义的作用范围 ;

在进行宏定义时可引用以定义的宏名;

对程序中用用双引号括起来的标识符在预处理时不作字符替换,

宏定义只作字符替换,预处理时不分配内存;

void main()
{
printf("l=%10.4\nv=%10.4\ns=%10.4\n");
}

5,带参数的宏定义

带参数的宏定义不只是简单的字符替换,还要进行参数替换;
一般定义形式:
#define 宏名标识符(参数列表) 字符串

6,条件编译

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXgAAALSCAIAAABYkF3kAAAgAElEQVR4nO3d36s0yX3f8Zrz7DpC+gO8BNvIKJe+CiagIDss3gRbZu0grBX7Q+vsA7vsbtYQL7kVHJBzY12FgMk/4Jv8CZmbNcqdZRaMQVGwkDZaKX5W2bXXPFpEHtiTizlPn56q7/db36qu6qmeeb9oDnOqq6tr5kx/TndNd0+49/KDJ994OJ8+8/ann/vGzS//yc0v/8nNP/tPN1/41s2v/enNF//z7fSbf3bzm3928/R/vZ3mvx4eMzExMUVT2H3lh/defnCYnnzj4dVbH3/uGzef+8bNL17f/OL1bdx84Vs3X/jWza/9F/f0p0xMTEx3UwhP/+XuKz/cfeWH4bnv7V79YPfqB1evfbh7/e93r//91Vsf3/vjTw7T1X/8dD597hs30+Mn376ZHjz59s1n3v703n+4YWJiYpqmEH79L8LTfxm+/J3w3PfCSz88TLs//PHu/l3oXL318Tx05tNh1tVbHx8Ou5547WdPvPazJ179mImJiWmaQvjVPw+//hfhy98Jv//d8PvfneJm94c/DpLDzs40Xb324dVrH967/+G9+x/uXmZiYmISpsdBc9ipmQVNCOHm2DvvvHN9fR1COITL7tUPdvc/2P27B7fTyw92Lz0IL/wfJiYmpngSg2b3/I8OQRPCYboO4XoKmt39xxHz8oPw4k9up6nFr70fvvojJiYmprsp/Oqfh3/+P8JvfGf3zLvhue+F5763e/5H4cWfzILm+uYmHAXNfBcmChpSJjcddg/71WdiGnEKT/23Q9CE3/7uIWV2z/9o9/KDEML19fWUMiHcxEGTHi597f3bqUNH5wdxgzRSvexnn/rmZ5/6ZtqltE27vuepNXnKTExLp/BP/3v4F38T/tXfhi9/P3zl/fC198PzD3YvPQgh3NyEm5twfX19fX39zjvvTEEznXeze+nB7qUH4fnH03N/F577u/DVnyyZHm8SQuFhexMr+Kephc8+9c2FnaxoIVowfV5Rm9n6deVMTGtPt0Hz9N+GL39//unSIWWm6bCDcxBnzQs/3b3w07ugWZY16fY2lST//JutYp0WjndP4l/DV38yfyxWmK93yWMmprWn8Plv3wZNCDc3N9fX10bE3AXNKx/sXv5w9+JHuxc/2r3w05vEFDpioViuNZKW320zyVyjnWjVh8Xn9bXH9pPSZkUr1dY7/ZqtH5UseczEtPYUPv/t8MW/Cf/m/fno72Fo5pAyUdCEEJ549eOrV/5h9/LHt9OLH+1e/GjawA7/gT/71DfD8w/mJbeb3/MPjPL5EUTUSCqqfLch6e1HaxdL0sfzdUX15yuaz4raj7qkdcOun+2n8VjrFRPTSlP4/LfDF/9nePrH6cdMU7LMPfnGw8OpfrtXHs7jZr5h3O7pPE6fQ4nncfrrPMIi88Vvbm52L340rd1oP1siPp5nStSl6ClP3YgKPd2w6y95PaMXjYlp5SmEX/qr8KUfzPZohI+Z7r3+8yf//e107/WfH64zuLr/yWHavfJw9/WH0/s4vPCP0zQv9DxOf51K0g1mqnO3u5Fbr70Kfz+jnsyfsjilfRa7Ydevez0Pr8/RHl+ut0xM7afwK38d/uVt0BySZfqMaQqaJ9589MSbj55869EUN4fEuff6z3ev3sbN3T/Mrz+cpnmh53H6a1Q432am8nkde73aKkr7OT2er3TelFgYPSln/5e8ntELdbufddwmE9MK0+Og+Z0P0kHf+bjMk289Sqcn3nx07/WfX7326ObYtLMzBdD8jW6Xz2dp7UyLiIVa5bR8vop0VlQtWyFqJ3qm0XM0Xp/S+ka5VpmJaeUphF/56/ClH6RXNkVB8wt/9Okv/NGn/+SPb6fDr/fe+vTeW59evfHpE28+mnY3bt/Qrz2aptLy+Syt/jRLLJxvWlE7UX17VlQtW0Hs/F3uHD9H7XUorW+XGy8yE9Nq013QTMdN6e7MIVw+8/bddLj1zDxuDokzwnS0o3Hqzhym2+28W30mpsGnx4PBv/OBeFMIMWXmWXN0e5u3Ph1kmv8bP3lnmJiYZkHz1Y93X3+4e+Xh1f1P7r3+88Po7+FwKU2ZKWimabSsYWJiGmcK4Zf+6nYw+A/+72F8+Or+J7tXPzl8qHQY9J1GZw4Rc3h8CJdhd2qYmJjGmY6CJrzwj7sXP7o9B++Vh1f3P3nitZ/dnUSjfPD0xJuPDm3dHo+detiJiYlptOkuaHbPvrf7g9v7POxe+OnuxY8OJ/5evfIPt7cBPoTOGw8POzvpdPXao939/8fExMQUTY+D5ks/2D37XviN74Tfenf3zLu7Z94Nv/3d8Lu3073f+/7Vs//r3u99f/fse7tn3zt8a8Ltdyf82/cOPw/ToUL43f/NxMTEdDcdBc1vvTsFze6Zd6+eeffqmXfv/et4unrmrg4TExNTdtI+1AYAAAAArO5Gnvb7sgkAdAQNgCVc2/88X8LdzyhEjHDxB81hOW/nSyoDOIGCHQ1H0GgpU7RHU5EaBA2wAQVBIy1L0ADIK9ujCbOfN3F8GCMynqCZL+0pn+Ya7cznauUAulseNMYYTWi9RyPGiqdCdkEAHY0fNPaeiLFHYzTCTg2wKm/QSIUrBI1zh0VrbZpLrACnVDYYPNudGTNoOHQCxmKM3cbMoNGaTQsz/fENBs93UooGfTluAsbGmcEAuiNoAAAAAFywngc1+8dT9Bgru7SXXXy+FW+/S3vdupnnS1XWaMvspQoX/mc74dPXNrzljWzLBT7l8ZQHTTZljMcXiKA5uQt8yuMpDBpPygQzdOZTVBiOy7X6dvfE+sZ6tZWm5aXth8LOl7Zj9NPT/pL6K/xdpqemVRZnaWt39kerj2X6pEzQ30DGgmnN0neAVt9oR+ueWF7RvjhX43y+2X6WrqW0/jp/F7FamneebmSrOdtBlW4pE5Q3R/ofyd4g7fpLeqiFS13/63pVVNPzom0oaLLt9A4a+31F0LTTM2WC8uao+7/nt0LQFK3XM9dT09gMCJqKFWVfAYKmkc4pE9wbanaPxr9Go36/oMm2by9uLGW03ypoquuv9ndZLWhIlj46Xx8QHVbsj99A6f6qvROrzbJXHdW31+t8XNp+NNfD035w9NOzFr+T/F3C8VOraKeifJoL4HIRAQD6Ktprwznab/AC7S32GRH+iOdp/1hartXUaO0Xdca/uDjLU9/f+eWdzC5u/+psv/TvEpUfHlf8xY32i55C2pnqJ1v0t0CNopFg7Q+zn22N6SLiY60kXVH2fZCu3WhWey7airT+V7w1tRdNrJk+/Xn3PK+ks/20sufVC8evdnbt2faL+u/vs7MyQdNX9UWVXYNm2q6MOvaqtWXtbSO7rmnBJu9L57bheV6l60qTS1yd3VvjL1v3NkizL01bo0GjsrMDWEP2pU7/8OnfVfwTehac14+WzfbKWJFW0+iY0Z9oRXbHivqZdlV8HcTXOduy9qQ8T1brUtoHsUta5excY13RGsXXROu//yVCL/6X2njPLXmHaZU97/7s+zLtuee9JW7w0YadbUSraT+vaHX2RlXUftR4tLGJ254419hK01n+t4HYpvZ87WaNVRhznQ2i2L7wbD3jbZR9Dxlzo/bnFbR3f/TTbjbtjHObyT7w0DaV0qW0VTtfW6MD9ovmb9/+8xl/yuixXUHsj/ZHNFqznwvac77U0Z9Z/DWqb0trpqsTW04rONuP5qY/xfbTFrKvldZOON4CPUt5Xmf7aWpr99S315jttl0n7YmnnaL+pKvwPGV04XmptT98tlwr0d7T/veBc6twrkXrsPjuL2K0kK5X65X/dbb7mT4pu37pKub91F5k7QVxrsguafI+RDPzlzf7Uns2toZBM69gZE3FNha919OfYmecwWSs13gipa/nkqARYyt9jp7WjLCwXx+j/0uCxt95gmZt+6orKj1vIM87pugdULcBiIsXBY2ncfsp2CljtOPccoqCxqhgL2K/qtk/vdFUNruX/F3q3odGg1iP8f/EqDMvzG4/zs2y4i0SxU2TNTrnhmSjEl83uyfp3HmQGbJdrX5qzpcuKM/OeNssiR6j3H4fGq0BAAAAANCX/4DUOOYfxMn7NuwrA5yS/1MnYwyvXWcatMmmDgzHGTTrbL0EDXCGDpvkkqCZH0lpn9Qa5WJTRrknRMT6aT/tprTnpT3Wms2ul1jE+VseNNPc+eYn1hdbyG51znY8bUahYDcyVUsXt9uxS4gVXJzpPd8kaNKSlDiruh1nZxYGjV1I0AAZ+5LvdaoIGk/Nij2aLKNNbW/L2ZTWoHMRUgYXbfmnTv5/7M6gEXdDtJLSfrYKGnH3iqABBM49mseVy46DxFlRobiUp51sD/1BkG1HnBv1tm69pA9whk61Yds7RwDOhGeH6JzWCwAAAKCJoo+3Hy9iDY56x1mPp3SusZTWlLN9baXieuvaAXCkdNwg+uQo+1htRy/3p0BUqD121i+NvGwdALeKgkb7vLbi82N79vINvi4gCBqgi3WCRqhgr8hRkpYTNMCgigZo2u7RVI+VaDXFQyF/U0XrDWb/AagqrnWqDpqjyoUlS/ZiStdb2gcAGQQNQQN0MQ+E0qOnVp869QiabBD4D9nq2gdwpOgkmhBqzqORC5UxF2M4pmisxC7XKi9fL4AGxKuWjXIAAAAAAAC4+E/Ys+8gN5Txe6jZbs9z7NFzxtYn5/g6LLkKYfDtYfDuGYyer3s/0NKTk6obXNjsaM7miTSy5Ort9NfRDN49wxhB0zxlsstu9e917DyeRVOtgkY8pJr/Kn4Wnh6CGe2kjUT1s701npSnP55FtHaK+jPV9D9fz4tZ2B9nyohnIE2Pi86UEleq1d+bq/af5ORsPyoUu5o+hah++voEfb1iJ7UKw6u+61W0daXVokXm5Vp9ox17dZ5u2NLt1qijVV7SgXTB7Oo863Iumy7nKzeSItqWnC0429eqeZKrov10FdlqUWHaQ+M1yZZsLWVCWHQJwrzQ+OdpL2I3Lm5sxj9tT29FRnZkg1WrLHapoj+rB40zZYyaQd8wugZNKPyHX/FMjaDxtxbM1yRbcsFBU7rIfK5nj0Dc8Pw5lSU25dxzye5qVThd0FRvLcasNYNmXtjwyWaDxvlSiIX+PSN7RQPrFDT2Ho1WspWgCb49naIOGAsuybvCoClKGbF8L81qHjRhtueyV1aqlXjaLw2ailc1eiL+RbYZNCEUjNHYBynihqctos2y24kep13yrDr71LT+zNuPls22k9b0dCZ9vvMK2oKe51XUH7uzyga/n20Y6eOovtaOUR71wVlfLPGvd/5EgtklZ2fSdkr7j01Zssm12Fx7Gblv7VzCczy4nGd6jvw7PukiI2/J4/dwgexuzpm5nGcKAAAwqH35N1WGEPZhP/1c2oGwT9vRWhYrAxhd6cfbtzXbBY2/HSIGOAeuT7jjfaA2OzUNqwEY18LdGTF9psdpJGlppeVX22gDcBpLgsYYZIlyR6zvHKMhYoBtKzrTQgwa7ZBKzCOCBrhEzqDxpEm6SPqYoAEuzsLdmfTXoGQKQQNcruVBE8zB4Pl4cDrLLhfbr3yeAAAAAAAAAHDRSq+oBIAydRdVAkABggZAdwQNgDUwRgOgL/ZoAHRH0ADojqABsAbGaAAAAACgN+EunuYEAMUIGgB5FREwv89eFCJGuPjXUnQnPW67B4yu7uNtLWi0lCnao6lIDYIGGFpp0AhJQtAAsFXs0UT3J4/iwxiR8QSNdhNy++bkaaHnJufEE7Ce0pFaMWiMMZrSVWS3fzFWPBWyCwLobuSgsfdEjD0aoxF2aoATKDqumbbSFYLGucNi9DlbDcAa6nZnwpBBw6ETMBz/6EzQg0Zss99g8HwnpWjQl+MmYJOEYQ9zAoBiBA2Ay0SeAReqaONPKxuLi7M89ffSZPfKU8EzefpprDHbE+B0xCOXtQ5qSjdp7YFWMySNayvStnPnS+B/pbKdT6s5XyJ/kAEr0tJkXlKVNUUbZ8WGZxeGZCs1WjNWt2TjFINsSQR4OrxkcaCz1kGT7k0EaXMSq3mazW6oUfo4t20jGrT+FAWHsTvmOVByNm40ApxU06Bxbq6evZK0kbSOnQLZZsX6IelzNgf9q/CnnvgSiesyIrioh0BP7YImTYHsroex9xGSWeIqsj0p3aMp3ePwVKiobAeTnd1pCUGDU2sUNNlDDKMkOLZq4/+21n401wisYLZgPy9PiolrSVvTnq+nEYIGY2sRNNntxzhAWLKJejpXtEdTt3F6dnlKg8mOTk8fCBqMZHHQVL+J59uMkUfGWuxgMvZltNQL0lZtJ6DdDa1L2aXS/mdXZ/SZoMHpGNcB9D+Pxth4jD0OZ2GaX+JPu6mGezRp/aJgdQaNvUbg4mRjxV7ELkznphtq9RqnxaMdB3sPyHPUZvfEv3slLggAANAOOxfAWDxDsM6paKmiHpbO0kZbjMEmey3OY0DPM617PSv6I1b2H6j6/1IVf9CGryeOaSO+Y9wmpuiN61nEfnPbG3z2jZX2Ya+Uz1ueV3O2X9p/Z2FFHbt+dtXOv5q2lL06uz/aH7T0r2B3CcG6qHLU+1GV/h+2W3BuGM658zpavohbQho3RuPRs3M+5Yr/wFHf2vYnfVz0yhtBU92fosireD0vXs89mujv7V+kIjiyW7Wn/YVBE/1XDMc/0xai+tmgKe2PUS0bH/Nq4uvjfzWys5zbtrOyv9kgNZt9/yxf6UXqfOi0JO+db5S6YBLbj+Y6J7E/89aMoIkaWRh8/mx1trnkJbKVZpa4Xv8qxBKxD+mKojpL3nIXrFvQVLz50haaV/YHTfUq0ppG0AQpa4zuRS+mJ/KcQSn+gXr8CaLKnqWi4NYWLH19jP5ovdLeP6RJzmB7NHX/JI23RenmZ/fN/yyi1YktzDeGbGWtJ9lelW4P2raabb/uH0ld//1/KU/74h/Crl/0zkHfoHH+5YzFPe37UyNbsjBo0u0zWlBMvai8KGicwZH20Ng8/IVpZ0o3vIr+e5aqyL6FEUbQ5Az88bb/zVqxIyCWNNmjMdaira4oaOyl7P6UbtjZBZ2vvLGgc3dJXKO9SMUT91dLU/X0G8ygtIsqh/nSpdJ12+9dz/azPGiK/h/ae2H2Nlb0BIs2hmzH0jWW7sU440PbAUxneSr446kitYuyEqek/Zcw3u72luAJEefby1NBW4W/BbvD2ZAS66Qt+OPDLjQ2dfvvpYkWSXvrqa91Q8xZT+PZZrNPGQAAAAAAn5N+UyWAc9ftmyoB4JgdJcuCJvrwCMCl6hk0wfwYFcDFMKKkxe5M9qwNABdgsIsqAZwj7VOnJm0zRgMgBClT+KQJQDPDX1QJAAAAAAAAAGiFiyoBdMRFlQBW0vlaJwAgaACswLjWiZQB0AZ7NAC6I2gAdMenTgA6Mi6e5DwaAAAAAEA3HG0C6M4OGvHL5JfXJ90wvHbfgtD77b6f/fSs17hRcdE9jEsrp8vad2jf6/XFJyvW4SbwGJX90VLJp07rvMu1oDEqL6lQVC2qX/1SpDml/ZquiJTBwNpdgtDvjV7x/VAnCRpP9/xREvQcIWWwNcbXrQwTNEHatILv+EIrNw5Ysu3Y/dwfPzYiUiwxfvUUkjgY0paDxlhvdijH2DKr9xT2Sj+NRuwozPatYl8POAXjEoSLCRpjc60LmnQV/n5WtF/aDrA6MWiqvtep03u96J+8Uejfo8k2btQ0gsbolb2UVtNuGRjJFj7eNvYItPKTHDppzRoNRk8te8xV9CIAA7D3XEr2aCr2OMp6qrRjHO+IndF2jkrbKe2qsXjUDa3BbFMEDXBBtDTMLuVMEC2MCBoAAAAAADau3cfbK2AwAtgazzdVjmfozgGQETQAujtF0HjOW1lSPs0FMAZ7jKbHCpUSZ7nzjF4AI1n9C+T857Zmg0Y70xfAYLYcNAA2YvVvquTQCbgkp/umyoWDvtmLIae5ANARKQMAAAAAADal9fc6OZfhtBfgMhgfLVV93lQUNEU1AWxci2ud6s7QJWiAi9Hookrt5Lqi81zqLp4EMLxGF1WmQZNNFvtXsU2tJoCxNboEQQwa+5DK2KMRC9mpATZrcdAY1wdkF7TbdLYDYHgt9mjsqx+1Eg6dgAvQ7qJKIxGWXDyZLQcAAAAAAAAAOPFNlQA68nxT5WBBEwgaYJNW/xaEhYbrEIA8I0pGvTl5tnyaC2AMqwdN6RnA2gnEJAuwHcYd9jqt0F2eDRoutgQ2YstBA2Aj2t3K07tCpYRDJ+Ac2RdVdl3zskFf7egpXQsAdETKAAAAAACATdE+der8TZXZpvyDu5xBAwys9UWVDYPG3w4RA2xBo5uTNz9Dl6ABzki373UK5skvQYqk7Hk06Uq5+ADYgkZjNGnQGIMsUe6I9Z1jNEQMsAWn+KZKMY8IGuB8neKbKgka4MKc4psqCRrgYpzomyrnv2qz7HKxfQAAAAAAAACAod1FlQCQ2OY3VQLYIIIGQHcEDYDu7DEaggZAA3aUEDQAGiBoAHRnRAkpA2Cp7EWVAAAAAIDtig76shMAFCNogC0xLncq/xaE3ne6u7uPXxQiRrhUPYuFlRu+CP1WYbTcpP+kOx7TLjWovWdw+rgtOWi0lKndo3HWXm1Dct47uUnL67SPC7YsaI5aatGdtM2jiaDp0/I67eOCjR00U7O3jUfxsfiEIM/Nzz03RTcKg1nfud6g5M58FVr74rMWGavw99NeBS5SunFqs7ItteiO0fJR0BhjNGkdd5/3SnlItjFng+F4O8y2byeLsT2Li9u98tR09rNoFbg84kiwMddoqUV37MZXDpp00pYyGgzKglr7DYPG3uNoHjTZpnCpxI2wKmi67svEG8yJ9miMpexZWtAU9cdYSgwaZ16UdiBdkYGggR4iyz516iF+Z2/w0Mnf/naDhkMnSLJjqCW7MxW76AU9jdoR+9ZuMFg7uhHrG+1EhaGqfXEt6UrD8SrEfpaut7pc7CewNdmPt40M3b6tPJ+t9BNQXHbQhC1sw+P3EAAAAChgHFwMecQhDjoCGJj2MfbYQxuDdgtAnn1+8EgG7RaAvHWDhvM4gMuz7hiNlgjO8n3ywGgZwBg8FyK0XaG7PBs09hm0AMZgpMkWggbA8Owo4dAJQAPaefr9z99fOOibvThwmgsAHZEyAAAAAABgO7QR36qRYO3Do5p+lQzucgYNMDDjokrxcba92c/lnO0QMcB2LDs/uMcZugQNcHYWX4ignVynnfwSpEjKnkeTrpSLD4CNaHG5Uxo0xiBLlDtifecYDREDbEGjiyrFoDHO6A3JY4IGOFON9mWyaZIukj4maIBz1O4GEdoAjVgtEDTABWl3UaX2wbZ9JWTQZ9nlYvsAAAAAAAAAAE3TiyoBINH6okoAMK3+pSsALg9BA6Av7ZsqSRkAbZzo250AXIxsjhA0ABbxjMsQNAAWMS6e5DwaAAAAANi66KAvOwFAMYIG2BJ7U6y6c3A/d/fxi0LECJeSoLFvcux/alrlhi9Ov1UYLTfpP6l/eeyPsWs30X7vJDlotJQp36Ox6zlbWW1Dct5TuUnL67SPC7AsaI6Wa9Aboc2jiaAhaLBJ6Xk0aaGzpRbd0Zq9bdx/N/VlQeO5KbrnZulGYTDrO9drdz6dqzWiNZVdhb+f9ipw1sTdGbHcbmad46bgGKNJ67hXkf3V3pWwB3rSkrRZrX1n97QFi+LDU9PZz6JV4HxpKSPO8rS3rDt2s4METTppSxkNBmVBrf2GQWPvcTQPmmxTOHfiRrjss+Hm7yFhqzt10PgbsWdpQeNZvDponHlR2oF0RQaC5pJkt8BhPnWK38F9gkZcafpr20Mnf/vbDRoOnS6bvedSvjsg7oeHFu8qOWjiSt0Hg7WjG7G+0U5UGKraF9eSrjQcr0LsZ+l6q8vFfgKjyn68vezob6O28jy30k9cPIJGMf5THb+HAAAAgMAYQB3yuEMbbwYwqnmIaI/HM3TnAFgIGgDdrRs0nK8BXB5jjKbH2pQSZ/k+eWC0DGAMdpp0yBqtxYqgsc+UBTCGdpc7FazTXV66RwNgPFqIdB6v4dAJuCTG+TKdT6JZOOibvQhwmgsAHZEyAAAAAABgO4xB3/LBYO3DowpFg7ucQQMMzPgYu+rzpoZB42+HiAG2Y9m5Mz3O0CVogLOz+CQ97eQ67eSXIEVS9jyadKVcfABsRIuLKtOgMQZZotwR6zvHaIgYYAvE7y0x5mrNzH5OJcYZvSF5TNAAZ0r7vMmuEFV3pEm6SPqYoAHOUbuLKrUBGrFaIGiAC9Luokrtg237Ssigz7LLxfYBAAAAAAAAAJqtfVMlgK3xfFMlQQOgGc85NQCwSPYUYQBYhN0ZAH2RMgD6MtKEoAHQACkDoDv7okoAAAAAAAAAwLnQrpysvaKy6xiycR8/rX5pf4oW6XpnP61xbieIrWl9UWXvbUALGqNy9Vr6te9nBCiwTWMHjXYvYXuR6nU1rLYEQYOzszhoinY3KmhftCDmjnEn8yAt4rn5efVN0aObsWf7OZ+rNaitwtl/4BRajNGcJGhCeeE+qZBu/FoLe+Vx1j75qdWxS8RybUF/g0B/Lb6p0tg4W2kVNOljI2iMQ7YmQWPvcTQPGuBEWnxTZei8i25s7VMFcSm7sGKPJtu+XTna/p15kV01QYOxtfumyrvqC7qTbdZ/0OEpPPmh0/pBQ/TgFNp9U+XtQoWHAEUti+0YxzVGYdpVbaepqH2j81HQiO2HwvUuKQcAAAAAAABwaVpfVNkbg5rA1mzzmyqH6xAAL4IGQHfrBs0654kQScBIjDGaDkFTeiZr3Zm7AEZiR8kqQaOVZ4NGO6MXwEiyOTJ20AAY3ilSJnDoBFyW7EWV/da8bNA3e/HhNBcAOiJlAAAAAADAdjS9qFL78KimXyWDu5xBAwyswzdVhnbbvLMdIgbYjmVB0+MMXYIGODt9vqnSOPklSJGUPY8mXeB4DpUAAA74SURBVCkXHwBbIJ6tJz62m5n9DMnjqCTKHbG+c4yGiAG2o8MejXHRo5hHBA1w7hYEjSdN0kXSxwQNcI7afeqkDdCI1QJBA1yWRufRaB9sG4PB++RxWl8rF9sHAAAAAAAAAGiMQd/xvtEJwAYZH2kP+X24ADZO/IQbAFoiaAB0xBgNgJWwRwOgO4IGQBf2xZMEDYA2jK+p5ENuAAAAANi06OAuOwFAMYIG2JJ2d9hb4WZ3d/fxi0LECJeRgmaUfgCran3P4N7koNFShj0aYDja1jhG0MT3EiZogE0aO2jCfHcmJAdExoiMI2jSm6Wns+zydFmt/sL1AptlbIpVYzSdCEFjjNGkdRztz2MiSM9FLN87HmslResFtq/dJQidtooVgiYt0fZctAXrgsa5XmD70iOO6paWdkVoMN7q1goaT80eQQOckWWfNB21pDxuJd6VOFHQ+PdoxN2Q6qAherBxxgBq4Uc2xk7+8u1EDpq40tLBYGO81j9YOz/C2pv1K9YLYEXZj7ersrKyL11bB3AywwQNOx0AAADARdAOLlYZ3ajAcQqwNZ6Pt4fMGgDbtPgqhNUM1yEAXusGTen5KRXnswQiCRiINhbTbYzGecatVr5PHhgtAxjJins0zmuIgiNo0gnAwLYZNACGd6JPnTh0Ai7Mic6jWTjo67kuMZA7AHojZQAAAAAAwHbYg76Fg8Hah0daZf/n3NlFemsy2MywES6S/TF2+adORUFTVLO0cg/+AAWgWBY0dWfoEjTAhRG/bqVkj0Y7ua7oPBejZmmE+c/T2c867+x/aT899T39ATZLO2Fv+ulsZvYzJI/FkqIxmiVHZNoxXbptB+mB3aynsLRBsT/A9onjNYuDxj6kWi1otHJxYx4kaDwNAlsTBU3JVwhoaZJdkqAp6g+wTdmLJ0sGg0P5ljnUoZNdaC+ebbO0QYIG58XYbSn/PlnnYOfCcmd//O3Pf9Vm2eXi2nv0BwAAAAAAAADqiCO+hR9vr4mRUWBrtvPtlHNDdw6AhaAB0N26QdPj/BrnCXUATsEeo+mxQqXEWe4/9RbAYLb5BXLambsAhrTNoAEwPL6pEsAa+KZKAKhGygAAAAAAgO3I3mGvqLHZT09lhlGAC2B8jF31eVNR0BTVBHAWlp07U3eGLkEDXJjFJ+lpJ9cVnedSd/EkgOE1uqgyDZpssti/im1qNQFsweJLEMSgsQ+pjD0asZCdGmDjFgSNcX1AdkG7TWc7AAbW7qJK++pHrYRDJ+AyNLqo0kiEosFdBoMBAAAAAAAAoAe+qRJAXye6Z/BCw3UIgNeK34Kw0HAdAuCl3ZKm09pWOb+GSAKGYQzE8E2VAFoSTw7utCp3eTZouNgS2JRtBg2A4bW+lad3tUoJh07AmTIuquy62mWDvtrRU7oWAOiIlAEAAAAAANvR6A57twvNfi7tV8ngLmfQAANrfVFlw6Dxt0PEANux+Obkzc/QJWiAs9Phe52CefJLkCIpex5NulIuPgC2oNEYTRo0xiBLlDtifecYDREDbMe631Qp5hFBA5y7db+pkqABLsbpvqmSoAEuySm+qXL+qzbLLhfbBwAAAAAAAABoml5UCQCJbX5TJYDNImgAdEfQAOjIHqMhaAA0s+634gK4SAQNgC6yYzGkDIAG7PNoAAAAAAAAAABnhIsqAfSVBkq3SxDILeBStQia6B7AWh0AF+mQIy32aOybhJMywAVrETTGF8VNFQBcqilEeu7RkDLAZZvfC2LxF8iJYzSkDIDH+nzqRMoAeEw8ZYbzaAAAAAAAAADg7DS5j+c+7KefS/sT9mk7WstiZQBjafWRU8Og8bdDxADboGWKP2j28al/bXZqGlYDcEritU7zWd52pN0ZMX2mx2kkaWml5VfbaAPQS7+gMQZZotwR6zvHaIgYYHTaRZVGodqUFDTaIZWYRwQNcJ60iyqnua5GHGmSLpI+JmiAM7d8MDiUJAVBA1wc8TYRxp6O0ILywbYxGDwfD05n2eVi+7XPHgAAAAAAAAAuh/jZNnfYA9BMiy+QAwCTvedC0ABYyrjWaV4BAOrZQUPKAFiq4UWVACAzLjUgZQA0RsoA6Gv5RZUAAAAAAAAAgC1oclGlcZ+9RZ173EhFO6PdfG8fhN4s7J/YJjCcVhdVakHTSl3LKwdNdmU9ekPQYAOWX1Sp3eu3rRMGjb+J0YKGDMIQWl1UqX0RQpo70Z3JxfpiWmntpE15bmbuDyDxYGc+ieVF9Z3t2z3UKpM1OD0jaIrGaIzjJu3bEaK5nmQxKmS/tqVu8MgzpLJ3z21SITWPGLIGw7EvqszOOqpWGDTp4+xmvzxoSg/xtNnGvsapgiZbmazByXguNcgGTXbrHSdo7PaVlWbmNs+RHkFDymAICz91sj9vqg4a/6GTeCxW2r6mKAjSQ5iTBw0pgyFot4nwj9EYZ9CkezrzX7VZ/kFccWhZ28mqGwwOUhbMp7SyXX+vlPvbFxsPSlMAAAAAAAAA8FiTb0GwT6UpORNXrlz3+bRzdek4sbO8ZEVyoXZKDnBWtE+XWl29PZ/rbGRN6effRZ+Uezrs+fyIrMGZWx40njNuhw0aY9XO0Kw7HycQNLgc2rVO2Yst4/rS7kzpeTH2yTKeM2js9j1PQSyxk4WgATL6BY3nuCMtMTZaccHs8Y7dpqd9Mciq2rdKCBqcLe2iSs/FlnFTJUFjHGqVBk1p+9mnoPXZqEnQABbtokqtXG5EP98/qiaWp635Z2lBk+lxVftGOUEDuCz8eFsboBF/bXvoVNq+IbuguIqSMSCrhKDBmdP2XJx7NEEJmmDu7NQNBouNRI+N9u2nYHRGXFdJ40eTOAsAAAAAAAAA+kvPo/F/vA0AeWmaEC4AGiNoAPQlXtNE0ABoSQsaBmgAtOG5eJKsAbCI59MlggZAG8YYDUEDoAFxj4YxGgAAAAAAAAA4O+Kgb/Fg8GAjx/vyoex0kYpGAAi0+3h2Xmvn9stpmULWAA2c5qLK8TZeggbopc1FlcZ9t4M+y3dX7v1jIdnm9zPaIlHh/EE01+5DvqMANC0vqhS/T2SvzC1peZ4y/v0OsWQqTGMo2wEANbSLKisvQSj64qIWQbM/Ji6llRA0wEq0iyo3ETTZpCBogLGcco/GN0wTCBpg0xpcVLkPwvju/Fd7tDjTvX0UNPOsEYeKxUOqqKY4Wqx1IN9LAPAgaACsofRjbwAAAAAXxThhr+jQQTyfBQAy1zr5c4OIAaCyd1sIGgBLidc6RXPdTRE0ACQEDYC+tIsqjUKlHcaAASjsT5dKo4OsAWBZnjKBoAFg0C6qLG+HoAHQGUEDYA2MCgMAAAA4Y+KnTsVXVIb99DMtF+tXzKquvI8/zd9PHfaUOzsDQNbsokolaIzKSyoUVZvXNB4Y5WQNsMjyoBH3CLKLLKxQVM1exNixWrguACEo1zpV7NGIuzNa7miRpKWVp9zVy1lXxRI7WQgaoJJ2UWXpGI1x3OQs9By/pCWt9mi04LMXBJCnXVTZao9mPitbaASNcWjW9tCJoAHa0y6qLAqa7ABN8z2abOPZDjsbIWiAlpYPBgf35qoVnvbQKbtqUgZYRLuo0j9GowVN6SCutnPUcDA4O9I8zbV30wAAAAAAAABgg5pcVNlbqzvdGDfNScv3s59TyX5Wvg/xQLGzl3tpciqqrLUQpEa4nRB6aXVR5VD8UWLPEjfIvfK4yF5/ULh4TRe0oAlkDTohaIxZ/YJmYQvHfag4mUhdNUGD9lpdVFmyxlhUPj1OF0nbSStHq/CUh8KtSwua0iOgtIWonb3SvnS8Jp/ENH9Q0CUxcwkgVMteVNnj3ZVu//PH8+gxliqtXFcuVzYHVhYGjdago5qaNeJcq0tkChrSLqoU6zRdrxU0zqXsBXsHjfhYK/G3FvRB4mzQhCRNqi+hIGjQknZRZVSnw3oJGrW+tri7mhwuBA1Ob82UCesGzcIAkisrj7USf2tGg86gCbNMIWgwEHGPputJNPZgsD2Im9aPHkdLae2IvXJ1/vhwZj5MUzF2I1bW2hEPqfR+CheIup5giywGTm/Mt2zXXo34hBV85IRzYOxTnNyYvVoTrwAAAACQMj7erjhbz76hZ1qZ29YBF8HzqbY/a4qCpqgmgA1rFTTZL0LQlvJUA7BtDfdoxN0ZO33qbmZOPAEbYwzQiI+tppKgySaL/avYplYTwDZo4bIkaOxDKmOPRixkpwbYvOqg0VIgGwdGher7GwAYjidcnIPBwX0o5PxVa1YsATA07XyZovNojEQoGtxlMBgAAAAAAAAAOjAuqgwlVzmto9WtUoy74Qh3C539nEq0O+yFpHK+M5u6J1YqfX1uy0d79+CEjEsQut7KcwUV96OU7yw3+xkVpo/rDPIy132cpwVNIGswsd8Jm36fEDQVKrKGoEHeSYJmn4jKp8fpImk7aeVoFZ7yULhVaEEjHkl5mkobCUlTxiHb/niy29HqP54lnww1f1Dw7MTsJoAujTFAE3ru0aTb//zxPHqMpUor15XLlfUNNSwOmhDivBBbFiuks9Jq2Q4bWSPONZApiK05GGwHjXMpe8HeQSM+1kpK2yl6bAeNWJhOSQt77VeCBosQNNp6hcrKY63EaEfc2o32xUMtrQPOYFL6JocLQYNi9sWT5xE0CwNIrqw81kpK21k5aLQOi4dLBA1qiGM09vk1LVZqDQbbg7hp/ehxtJTWjtgrV+dnOyDRzkjueMTVjtG+2I623up+Jo3vo/FgZ9Y0yXSg3phvta69atj0iK+dhI+ccErGPsXJjdmriWcHZBCDv5IAAABAEWPQt2IkWLvPXk3HpBFHrWVuuwcMzbioMltHWKpd0PjbIWKA0XlCxFUn3jdqs1PTsBqAk2kVNEHZndG+hkW7SC97c/J0pdyxHBhd9qy8JcdNxiCLeJGecX2NVqIVAhjUwksQxKDRDqnEPCJogPOXfurkXdCRJuki6WOCBjhP2qdLpWd1agM0YrVA0ACXpslFldoH28ZgsHiRnrFzZA8SEzcAAAAAAAAAoGt7USUACNpeVAkAgobXOgGAjKAB0J19Vh5jNAAaW34BNwBkEDQAuvBcVEnQAFhKG6PhPBoAAAAAAAAAAAAAwAr+P1A5BDdjhuQ/AAAAAElFTkSuQmCC" alt="" />

6,#if

#if condition
code;
#elif require
code;
#else
code;
#endif

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfQAAAELCAIAAACgcOMRAAAaQklEQVR4nO2dz48cx3XH3+wCXEVXA4Hgm5GDDzlRCJLAhOAIshRAPwAJEgGa+kUKWpBhCBpmdPJpYSEHAzEQAzZy8s3wPzEX+pKDYkOELpEFBqFEyfRyZQJkSAHLiBwfera3p6ve66ru6h9T+/ngYVDz6nVVdffMt2uqa6rl17/65a9/9cvZi1dnL149du7e1uWH3/jR4ps/Xnzzx4u/+tfFt3+6OP5vi+M/X3znZ4vv/Gzx1C8WT/1i8d3/UK0IwLA+zPjgYVhHG/3jndxksVjMXry68ebusXP3Ni7e2Xrv0Td+tCj1/Vs/WXzrJ4tv/3Tx1/9+aMd/vrSqE8MwDJuOiTz9gbz8mbz6yWx7b7a9J+f+VNjGxTubl+5v/uDB1nuP5F8ebl5ebF5eFOmt9x6VziJROI/98NHW5WUkhmHYGtns4qPMTOTpD+SF38np/z20t27KO7uF0G9cvFPY5qX7mm1cvLN5/t6hbd/BMAzDxjWR56/JC7+TVz9ZWkXfS4lf2j/dPbTSee5Ps+09OXN7aW98iWG92S6GYaEmT/5Gnv5g9uJVTdxLqwn6bHtP3tmdnb0lb+3KW7vyxq6cvimnb8qpP2AYhmEjm0/cP/eKeynoFU2/KW/dXGp6Kesnv8CwXuy1GxjWl736aW4mT/5GnvrtxrN1cZ+dvbUU8Xd2xUvZVa/21kc/QxiGYS1sdC3uSdzlH/97pdv+1u7s7K3CRGSxypUrV3Z2dlb0vRT30Tt3WMY2+vcfy9hG1+L04n78P+W7H8nzH8vL1+W1G3L6pryxWwyjV8VdpLAdkZ1DcWdABsMwbJoWI+47i4Ug7qms+BnUXzyGYUfa5O/+S058JM9fk1c/lZNfFOK+8eaKuO/s7JTKLrIYV9yrA0QTKaT1to8/8f7jT7zvNskt044P2bUku4xh2dor2Zn87UfyD9fk+Wvy2g05+YV8/49Fz3129tbm2b3Ns3sisljIYiE7Ozs7OztXrlwpxX3jzV35/h+XllrfGzWuo06VJZRy2bqRLUqobejuV63Mxvh2fgzDsrVDcX/lCzlZiPuX1UkxhbKXVnTkC0Rk880v5Y3dPvTd1bjSY3dyu1QxTAm1brjbK6+mvQHVerukMQzL1pbi/vJncuoPy267yGKx2NnZMWR9Vdy/lFN7hb4vHOTkrcK8Tq9fK8T1V3SqnmuUU6u62Lwar6XtndKyapVq9ZZvG+Nrni5pDMOyNfn7j+W5z+WVL+TkLTm1V3TbF4vDuTGlstfEvVD2wpb6fmpPTu2Volb0NB9/4v3SuTIsUAl2/dXRiVohLrXgQ/HSy6/V7vW46WpdtfhqRe5x8FZai6yFGfGN7TTSWqvWw0b/tmDYGtmhuBfKfua2Oz2mVPMqm2fuFCav35XX78qp24WtilHdGZh235Yel+rmi8VCTt0uazfKb/R406sXj5Um1Xa5bEbNGdIMO77L8awdNAzDsjV56po897mcPBD3t+8eiLtnesyxC/vHzt07du7e5tmvSpuduS+n78vp+4XKH2pHIfqOMyTtLcej66Wkvn5XXr972K1uqteuIryddbms7LLX3DZrR8yIb3c8i+OzcnFqai2GHSE79X+5mZy4Ls99LidvLZX97bsiUqh5OTdmRdwv7B+7sL95/sHG9v7G9n5V4gsrtaP01Jwh6cZyqjpV+qsxdr1aFbHtLNPVSqtFeZ21nQpsf5fjWTtQxdGrlTl9W/YhMAwLMTlxXZ67Ja/sFco+O3PfvXFaHWc/dvHrwjbPPyglfvbu/uzdfTmzv1hFzuyXVvUvu6Kmv5qllVNu4nVqwa6/WoWbVQtrDKiVU9vT2j4axyc23vBrwRiGZWty4rq8cFNO7ZXKXlOrmrhv/eBhYZuXFhsXHm1ceDS78GB24YFsP5Tth7N398tu9bJ7+O5+abH+apYWX2Z5nVU5q5VTi7ezamGNAd7Gl42p7aN2HGLjbb9xkDEMkzNf52Zy4jN5YU9O3S7FvRyTcbvtW+892rr88NgPHxW2eWmxeWn5eKpC6Cdl1UvU6I0prNDW/uIxDGtnRfc0KyvFfXbm/ubZrza29/0L/BbKfmBLcS+fQHjp0EY/SVWrdldHbwyGYdhgtiLuhb4Xg+nHLn69HIG5/HDr8sOqsjfqO4b1YaN/WzBsjawyLPP63bLzvrG9v3n+wbEL+3WJr4zJeJV99P3BMAzDNi48Km6oLsW9eF3+O+nsV5vn7y0lvrBynsw//79rRXFFrx/D+rDxBzExbI1sKe4v3ZDXbhw8UOngr6pv393cvrO08/cq9qCYIVM12X54cNMZw3qysacfYDnb6B/v1CYnrsuJ6/LCdXnqt/LMh7PvXd149urGs1fl+Y8Lm710rTB5+bq8dENe/mxpr356mC7spRsYhmFrac9dz80Oxf2ZD+WZD2fPfDj73tVS4r1WBMy+d3VWxlc2xLCerPiIYlgfNsvOZOtvPvnLC7cfO/k/2gxIAABYPxB3AIAMQdwBADIklbjP55HxMi9fXX/Xxsi8RTnttuqPuXha07F93jIBIEO6i/t8vrS4rRRxT0W7kgcW98bK+mgN4g5wJBi+5z4/vBzM++ssjyju4UVMTdzRfYB8GGVYxttt92p96dGytCuEVo5blFZOuyuQdyClal5/VHxg+XYLtWD0HSATpiPu1ayap6rLRlhjOW5a26rdzYCQIfJ5cG6SAJeqrKPvANmyFuLuphultru4xw4fadlGn3oscW8MRt8B1p6Bxb1RMacj7nb5SqUNucm1uw9xR9kBcuAvxrihKrp6thb38GEZ7zhPbPkaUeLrDo+MLu4oO0AmdBf3Wle8OV4Rd2+PvvpWywq/Eeq9Pav9mGh3Q1V8+mvc8PR2572baOU0lu8tXJSiACATUvXcAQBgQiDuAAAZgrgDAGQI4g4AkCFJxL3d8jIAANAXSWbLeNMAADAaaYdlEHcAgEmAuAMAZMhjx3+fStxRdgCAqZBK3FF2AIAJkUTcUXYAgGnRXdxRdgCAyZFE3KMWDgMAgN5JeEMVAACmAuIOAJAhiDsAQIYg7gAAGZJqKmTs3VT7GdnhTz7Sgts9BDW2Ovtt6fE+Saqpojg/AMAKW8c/HmXhsNgnqXYJS4v3ma6BnpAG2w/kQ9wBIIju4l4l8BmqjY8nnbi4uw9itZtkX8mUWuL8AAArDC/uoohd7AOv7adghzwa2y7faLxRlLtfht+sJc4PALBCKnGPGnN3xc6rkq7f3koLKz1usYFdb63xgeIeUqwTH+cHAFhhIj13Q9yNYZxYcY8tv7HxWmPCRV+vJc4PALDCwOKuKWl4z90bFpKliXtDi82SQ4aPBHEHgOEZfraMMaDhvk07LBNbfmPJXdJNtcT5AQBWSNJzj5rnbtx11Dr12piMce9UK6SWNsrXGu8tJzZtVrFijX4AAA9ph2UAAGASIO4AABmCuAMAZAjiDgCQIQnFfXKPYYq68xh7m7K3nZ2v0lc1AJA3o/xDdbjZHoEV9d2e+PKjZJ1rAADUQdwjwlqDuAPAwKSa5y7hwzL2LG4tHT7xu4s/qv2uU/SsyGGfml6XQzTuWI02hqMN78wdjPjqW+8wEdcVgIkygriLInPzgLRUNNS7uTfYiDfaY+MtUKsuRc+9prmNwV6PtqFdglE1AEyUhMsPDC3u3k69Ie72j4BYoq4WicRdy9WuBG5n3BB3rUfvLR8Apk4Sca9a2Dam31ZGreduBBvxIbmBm0xM3EOKDeyPI+4A68c4UyHt4Yt24j6FYRktN/AaU92ilbiHDLNoY+vh1QHAGpB2tkycvjcOzlQjvWMpIX5tZMYbH95yrXBRSgsuP/DGpqvvXo83uBoTWK9WCLoPMFEem9o/VO0eMSSlozSj7ADTZULi7u3bRvWpIYDG7jwA5MCExB0AAFKBuAMAZEh3cW8zFRIAAHolibgDAMC0QNwBADIEcQcAyJC0Y+4AADAJ0s6WQd8BACZB2meoIu4AAJMg4ZK/grgDAEyEVA/rYMwdAGBCpB2WAQCASYC4AwBkCOIOAJAhiDsAQIakfRJTzAYdK0xMi8XN/ZtMbL+OCiz6P02yPi/acxEMf+ta2rQv1WyZfpne5yPNky6mt1/jkOQ4cDCTw3kxsUUgyWMpO+lM2nnufTG9zwfinpJ1EJHaM2z7rWwirPN5GeB8TV3cR1g4zH5+tJYV9vuu9iBpb5bmd52ifDLUAZne9ktrf21/vVm1rbxOs2KlqcaDwhv3Vysn6EDo5TTW6zq9m2g1m5+fLudFS7c8DpwX3W98KaoJtwTvWbZbFeXvHlxntIXD3ODaZ9EOttozr71qMY2e6rm3g62mJtovowFuU7UGh+x4Qwvnpl+U/TXivbmx7dHqtTcP2aTI9OENc7eqZhkfpHDV8LeW8+ITYtfvllAtquY00t7SQnLXTNy96abNTE8P4m5/M21PV3HXciP3S2t/4+4Y4t5Ua7Df+23UOmWBtURFNtbr1h57MJSD3/28GGmlKcH+o3pevH5N9CXsXAwp7t49iuOIiHvst05an9R+9stuwHqIe9XZ+vzGiohdUfzFtZqQdOel+jboHHFeyljfedH8xrFt/L6HiEZIbtR3sJO+r5m4h3zs11HcGztqkSIiTidFi2z49Gi7EysigYel8fx2rLeDiPibk+i8VONbijvnJQDj84+4ay1YWlj0qtWc4mRVA5pbMq+eiZquVb9RXr/rrKWrFQ25X1r7DaXQWmtvErpfLfZXK6eaG0KXesWJCa9Xa06i86J5VD/npRXJvu/6yWq9Sff4FdI+rOPo0OmgD05ga9drpzKA87LWIO7ZMvGvXEjPEYaH85INxs/f0J/FwbW0aR/iDgCQIYg7AECGPHb89wn/xMQPTQCASZBE3L1pAAAYje7iXgVxBwCYBAnFHWUHAJgKiDsAQIakEneUHQBgQiDuAAAZkkTcUXYAgGmBuAMAZEjaqZAAADAJtp5E3AEAsmMK4l5bwKDRAACgAcQdACBDkoh7C9mdy/zwdVW4DUFvrKUID3xbesrGuAG90ucDZwDgaNNd3NstHKaJu6bs4T33mpobuSHx/TFX0gAACRhe3D3qnVrcqz1xN9e7iZbVH4g7APTIKD33mpjWJNsYYe8o7pqIR4l77dLT6NfL8acBABIwypi7V9yNMXc3JrDwQHHXnL2CuANAj0yn5963uBtj6/TcASA3BhZ3d0Rd+hF3b1oTX8bcASA3uj8gu8UNVanJ7lDiHpXuG8QdAHqku7hL5Ji7Ju4hZTbWsvKDoEN6GJjnDgB9kUTcO+J21W0DAIAGEHcAgAyZgrgDAEBiEPe8mSsGAJkz/A3VaTJP1Pr5fK4V5frnldfSE/5WVsXaK9zepmi7mkr63f1a+tf6IwKwXgw/FTIDwuXbzvKKoD1F0vZ4cwN77t5y2s0d0sRd0HeAwUDcW9C3uM9XE+4mIeU0xhvO1XT0SUXcAcYnM3GfO9T8ZdrdxC3HDa5VEeKXSEUzxF0d7lD8ZSEhA+7GLwBX32t/DlCKVCryXudG/+gAZEbahcOm8A11Nbearsq9sVVscDu/P9h59WZ5t6q+DTRvCb7rh6rv3lwDdBxgCNI+Zm8KX1tb3AO3sjccRdzNnrXH2bhVbKR3QR5vlg3iDjAEiLuWNa64e9Pa0Eq4uDcW4qZXY/yCjrgDTI6E4j6R7+yQ4t5R9P3BidIhuS0ivUMxiDvA5Eg45j4R7Buq9o1QN76Wrm2lleNtVVDjK33qLumyNFkNCK+9KXJeu6caqO9Jrn8A0EzaYZkpME2ZGLhVxtCNNiwzDEyVARiIzMTd6DuPzjRbNSQcAYDhyEzcAQBABHEHAMiSWHH3/rBu8Q+mqMeWGvfrDH9I4bUw+610uJEYxYhj4gCQCeHiril4u+UHosQ9KrJLsPd/mFHx3QmfvAgAoBK7tkx3cXefrRRUb5/ibiyT4i2q5yuTPw0AEMHw4i6KONqKr61tYvhjx3y8gzBa1V6/XUtwpD8NABDBRMS9Uc2jxtxbyK52vUlSRdQmiDsAJGA64m4P1wwv7sa1p0XPPbxhiDsAJGBgcdcUvFH1+hZ3b9q+0sSKOz13ABiOUW6oitIXNjyjiHtUOryWpkh/GgAggnBxr3W5vVkhGHcpvT3lLv6QxtRuqLZLh+xyOPMDAwBoSffH7AEAwORA3AEAMgRxPyIwyANwtHjsOAuHHQk6ijvXBoA1I1bctbum675Sd6qlxo3V5D1P8qu8lp7wt7J669W+DRu4e3PF7OCOuMdh6V/3TxXAiISLu7FwWOySkOtOi2fF+Z9AVHmtOd10iMc4CbHnpzHeW2+LP3aJLu6CvgO0hp57C/oW9/lqwt0kvBzbDNqJu7TSd8QdID2ZifvcoeYv0+4mbjlucK2KEL9EKpQh7urwheL3FmvkRl0PjF8M2p8YqolweOwqQBsyE3dxvvaujjeGtQhu5/cHO6/eLO9WdrFRp6h1z/3Ao+q7N9eqaDqfLYA14qiJe+BW9oajiLvZU/Y4jWLDmxEYoFxv5tpbxB2gdxB3LWtccfemteHyRuFuFGJ7k9Zldl+TRxB3gHYg7lpWiLh3FH1/cKK04QxpTRJxl4qOI+4Ag9JiKmRt4qOxoNgo2DdU7RuhbnwtXdtKK8fbqqDGVzrmXdLVArWKGlsS1dqmyDYLrkmi6yXAUSS/f6hO82s/fKsaZdcexpnIQWSqDEBLMhN3o+88OtNs1ZThiAG0JytxXygGAHDUQNwBADIkyWyZqdxN7SDuqUYAjEEhz4ScymvpCX8r0nxDNZyQx9i2WzomoOrD14bI1cNrvxVpuDHOsA/kTJKFw7zpERiq595iCof/xmDlteZ00yGejsreOFux9XPMm7Y6fG0ONtXZ9oTEA2RCqnnuIbm9k4u4z1cT7iYh5cQSMg+9jwfGSry4V3vibq53EzsLIENyE3fF6f48L/Ptaezh89mNee5RCmKIuyaCxkVCG6sx50HOa2+jnjnullAWUk20xj414jvahrhrfkQf1p6E4j7+16Hspyvd9qoceHWhdXA7vz/YefVmebfqjrEgjPs2vBxZlfUu+l5V6kBx15yNWQBrTFbLDwSIu7Zp1FjtKOJujK236LkrVXsU2Q4IL6318gP1YhVxbzxfSc4OwNqQarbMJMhI3L1pTayjxqz1ej3i20XctTJblLNSpi7oxoiZIO5w1Ogu7hP6agwu7h1F3x+cKB2Fq7zu/Bn3bVTJA4h7VNp2Aqw9WS0c5p0bs3pD1b4RWlXt2o0771ZaOW7TAhWk2jHvkg6pyMxdEeIW91TdApMsHKadl9i0Vn6jH2BtyPAfqrLac5/GP1QRixYMcNDoy0O25Cbu1fSUxF2QjOnBGYGcyUrcAQCgAHEHAMiQsRYO807GMIJ7WrIKACBPxlo4LErcoyIBAGCEtWXaTa1D3AEAIhhl4TDtDzKG4mtrlbjx3SdlAwCsPQnXlukyJhO7qokWH3JVAADIn4n03N2xmhA194Yl+UclAMB6M7C4a8rbKMFGQKq1ZAEA8iHtwmGBN1QleJgl8K1WrNcDAJA/3RcOq2aFYKhw1A1SbqgCAKjwD1UAgAxB3AEAMgRxBwDIEMT96NDl/gP3LgDWjIRTIdd6cexUS3trT2LyVjGvvJae8LelJ/BJTCF7OFfMDu6IexyW/rX+SAGMS/eFw6q5R4QWz2bzP/Gn8lpzuukQj30Gos5PY7C33rYP4VNrRN8BWjLK8gPrTt/iPl9NuJuElONuYoeFVKQFrKajPweIO0B6Uq3nrmUNzNyh5i/T7iZuOW5wrYoQv0QqlCHu6vCF4hdFgo3hnUazSz546/8TQzURDo85BWhDZuIuztfe1fHGsBbB7fz+YOfVm+XdynbW5LjjGE7T8JGq795cq6KJfLAA1ouEyw9M5Dtoi3vgVvaGo4i72VNWnYbH1veO4i6OgtuLgFoVTeSDBbBeJBF3bVmCUchD3L1p7/CI+MQ9vHcf0ozGAC1YE3TEHaB38psKOaS4dxR9f3CitF1yVDMaA8xfAJ6hGMQdoHeSLBxWzR0d+4aqfSPUja+la1tp5XhbFdT4Sse8S1orPJyQ4MYaK5Hz2j3VQH1Pcr0EOIrk9w/VaX7tx21VoAS3ju8PpsoAtCQzcTf6zqMzzVZNGY4YQHsyE3cAABBB3AEAsmSsqZDa85ha4L07p5XM45kA4EjQfeGwduOiCcU9vBxkHQCOCmkfkB1UQr2vn6bznjAMAGDtGV7cRem2exXfWHCq8QHZbqU8NRsAjgppx9xDC3HE3Rg09y44Zaxbonk0JwBAhiRcfqAx9zDMJ+7acI33GoC4AwBYDCzuIQrubuKmEXcAAIu0Y+4hPXdtwN0bJog7AEALkiwcFjXmrk2CNG6oehecMn4E2DdakXgAyB/+oQoAkCGIOwBAhiDuAAAZgrgDAGRIqqmQE3kMEwAAiKRYOEzarh0GAAB9McraMgAA0C+IOwBAhoyycBgAAPTL1uDLDwAAQO8g7gAAGYK4AwBkSLi4p1o4DAAAeie25w4AAGsA4g4AkCGIOwBAhiDuAAAZkmS2TK7/Y5ofGADAmtFitozr96YTMso1Y66kAQDWgO499/Dc1iDuAABxJBT3EAmudv9rvwO04R3DqaXd8rVKraYq6YMCEXwAmDADi3sZWZVd77aNoz1GgFu+5rQaqaQBANaAVOIe1ZFtvCvr9tPtQlxxj4r3N1JJAwCsAdMR99hKEXcAAJUk4h47/hwi7l4t1pyIOwDACqkWDgskZPUxbcKl4awljLuytXRDa/V57txQBYBJwz9UW4CyA8DUQdwBADIEcQcAyBDEHQAgQ1LNlon45+d8zpg1AEC/jLVwGPoOANAjYz0gG3EHAOgRxB0AIEOGH3M/2ARxBwDojbF67sKdVQCA/mBYBgAgQxB3AIAMSbVwGGPuAAATYqx/qCLuAAA9Mry4cx8VAKB3WFsGACBDEHcAgAxB3AEA8uPPSvsObbyos+QAAAAASUVORK5CYII=" alt="" />

条件编译分别可以实现:

1,代码注释,2,宏名定义判断,3,宏变量值;

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZ4AAADkCAIAAAAn0NVLAAAVxUlEQVR4nO2dTW8d13mA30sCpOptgELSJg1aoIuuJBRtAcNoA38UkGJAhk2AkWxZMkxIZQUFUb3KiohXWRToor+hm/yEm4W8KYo0AQUtWsdQUcWyolB0BIiQDFC1OF3M5XDu+XjnnJkzH3f4PHhBzH3nnDPnDjkPz3xLlmVZlk1+cGfpg52Va8+Wbjxd/eTgOz/JvvOT7PRPs9M/zb73s+x7P8v+/J+zv/iXozjzr7MoJwmCIAYSkmWZfP+XcuFLefeLycbuZGNXrv0hj6UbT5dvPl/+0YvVTw7kn14u38qWb2X59OonB0Uyn8iTKz8+WL01K0kQBNFXHKrt/K/l4v8exeVH8tFOrrmlG0/zWL753BdLN54uX392FBtPCYIgegyRs5/JuXty/tfy7hezKNmtENws/mHvKIrktT9MNnblypNZvP81QbQWOwQRFHL2Mzn7mXz/l5Mf3PGprQhDZ5ONXfloZ3L1sVzekcs78v6OXHwkFx/J+u8IgiD6DPmzf3Op7Sun2gqdlYz2SC4/mhmtkNraQ4JoJd57QBBBISd/Lmc/k9d+tfSmqbbJ1cczhX20I06KYVp5pNb7VyIIgijUJn//33NDtss7k6uP8xCRbJ7bt29vbW3N2a1QW+//2IkRR+8bDLEoISd/Lmf+Xf72rpz7XC7cl/ceyMVH8v5OfvisrDaRPLZEto7Uxq4oQRADjEi1bWWZoLZUkQ+B2ytPEMc35PQv5K//U169K+fuybu/lbWHudqWPphT29bWVuE1kaxftZV3jQfSSO26r5z89JWTn9pdstvUy4d8tSRfmSAWI+T0L+Sv7srf3ZNz9+S9B7L2UH74+3zUNrn6ePnq7vLVXRHJMsky2dra2traun37dqG2pQ925Ie/n0Vqu1Vu4Q230qKFQha1O1mjBaOi/b2MNivL18sTxDhjTm3vPJS1XG1fl0+E5l4rIh/E5YjI8gdfy/s7bdjN3sKLjD7AabKIblowhmD2iKw87SxQXm6TaYIYZxyp7cKXsv672ZBNJMuyra0tRWrzavta1ndzu2UWsvY4D2fSmfc1YudLW6k5V2nHWHRevVzeN61/Kd8sY6G+5RYfK8sbmSbTBDHOkD/5D/mbz+Wtr+Sdh7L2WNZ38yFblh2dDy28Zqgt91oeM7ut78r6brFJ56OMV05+WiTndohKhe18eb/MaMTGKHy06frbN5buzNjT5WUZ5csLsteDc6FGSaOYUr6yn8q0r1eLEb1vMMSixJzacq9deWKfEi1cVmb5ytM85NKeXNqT9Sd5zG+KZjJw2v5YZGzK1bMsk/UnxdKV9iszzul5dc51yfjKRTeMZEg39PJN1qex0ghinCHfvSuv3ZO3vpK1Q7V9uHeoNscp0ZXN/ZVrz1auPVu++k0RkyvP5eJzufg8d9zRlpMrz0qGTDvbcVitEMqlPbm0dzSkqlquvojwfpqyKH1lZ9h99q0xpXy99Zmvnzk1V/WWIBY15Lt35dX78tZXsvZ45rUP90Qkd1lxPnRObZv7K5v7y9dfLG3sL23slwWXR7HlFBkjGTJd2U55Ky3y5TL6cn2LiO1nMV1eaLkpZ9L4UoH9b7I+jRWVrz2jzeHH7D8oQVSG/Ol/yav35a3H8s5u7rXJlef26YLy8bWVG9/msXz9RSG4ycf7k4/35cp+No9c2S+inJ8NQ9R8eZavnaKKM+krbOfLi7BnGcUqCxjtGN/U+I7K+oktr+R9hQlinDFT2/lHsr5beM3YVg21rf7oZR7LN7OlzYOlzYPJ5ovJ5gvZeCkbLycf7xdDqtnQ4OP9ImLz5Vm+8sUsZ7K8MRvtGOX1WUaxygLOzhedMb6jbz3EltfzykomiJFFvkP6pZzflfUnhdqKvVF7yLb6ycHqrZcrPz7IY/lmtnwzm9w4mNw4yDU3qCgLuvfO5JGbpb3yBEEsbR6InN4u1Da58nz56jdLG/vuRxjlXjuMmdqKh5HfPIrev1U5ykOV3jtDEEQ3Yaott1t+EG3lxrezfc9bL1dvvSx7rdJuBNFG9L7BEIsSc2qTS3vFwG1pY3/5+ouVzX1TcKW9UafXev9KBEEQudruF2rLf86uxb36zfL1ZzPB5VGcG/3H/7MjbzEf8RFEG5GfqiKI6jhS29sP5L0Hhw/LPbwt4cO9o/dflV/Hd/1Ffla0HLLxcnZuovfzvsRo41uCCIqZ2l69L+fvy2u/kte3J2/cWXrzztKbd+Tc53lM3r6Xh1y4L28/kAtfzuLd3x5N5/H2A4IgiP5jTm2vb8vr25PXtydv3CkE54y8wOSNO5OifKkiQbQU+Z8oQVSHnNpe/csv/njzyYm1//Fd8wEAsGigNgAYIagNAEZIOrVNp5HlZVr8tPNNOyPTGu3Uq9UeU3H0pmH/nG0CjI4UaptOZxFXy6O2VNRruWO1VS6sjd6gNjgG9DFqmx7JcNreQKlHtYU3MTS1YT0YCz3tkDqHbE7TFRnfLJ8ffe3YTfnaqedf5y5kOZz5qPKB7es99BXGbjAKhqS28iwjU7aSUqyyHXvaV6veQcCQQ2PT4LlJCtiUpYbdYKQsiNrs6UrRNFdb7I6zb7YynupLbZWFsRssOJ2rrdIXw1Gb3r5noRVzk5urDbXhNVh8Tm3/UR+nEcTvjtpqC98hde7hxrbvI0o99o5h72rDazAKUqjNGIZVl/eozTmaK3/0zQo//O88KeEbSNY7jSAu+yiH+Z1DOWcVXzuV7TsbF09TAKMg3agNAGAwoDYAGCGoDQBGCGoDgBGSSG01biPVL22LufrfXbje1Ruxi9M/FhnnaZCqBbmTvkvkAKBEojOkzumKWpGXgDQplhbnxSiBmcBbGirPdWI3AJXUO6SBF39UXlcxcLXZV5DoXdI97lmKlkFtACp9qE08m3rsdWr6xWshV7Tp7SudV5qyv5eSV5eiZVAbgMqp7RNnfpNKbU32Rp2OsPN6LV+xImM3Gzjs8nU+UG0hzVrltQxqA1BJp7aG5xAUtSk7sLFqi22/svO+zoQrz78ULYPaAFQSqS1qvOb0SPiozVksZJZPbaFdV9sRdccWtQF0Swq1RY3XRN2Vsz+m3SGNbb+y5SbTVUvRMqgNQCWR2tq4Pd63z+gsr7RjJI1ppX1f553txE6ri5gL5ywAUEl6GgEAYBigNgAYIagNAEYIagOAEZLu4o/Y2+MBAFrj1Pbqmc97uT0eAKA1UqitDGoDgAGA2gBghKRTG8faAGAwMGoDgBGC2gBghHCGFABGSKJRG9e1AcCQSL1DCgAwAFAbAIwQ1AYAIwS1AcAISaq2uNMIAzvnMI0/CWJXqdEIALTAotyNMDxj+CyG3QAGAGqrC2oDGDDprmuT8B1S5Y0m4p8V9r6T6SFiWWZawlfFSJYnjLl6H6o7CgAt0ovaZnVcmalnbkzLZa+Fj62cmSJpi6+yAwDQH0lvtEqgNt/cFGqbzuOs5cugNoCFIpHaot5DelhNzaRWW6WbUBvAiBjUxR8hags73CaoDeBYk/oMadBG7Xw9evmjfp6hohtTQ21luzlPMjh3VI2SzvMMvg5U9xIA2uXU9gnuRqgFagMYMKitAbEXhQBAV6A2ABghqA0ARkgKtdW8+MNzoT8AQGMSqa1WLaQGAC2B2gBghKA2ABghqY+1xdRCbQDQEqnPkIb4irMHANAy/b09HrsBQGv09/Z41AYArdHf2+NRGwC0Rn8v60NtANAavb6HlPMJANAOw3jFsnGrVmUAAKigNgAYIf29h3Qq06Of89pSdFa5lLx44MciU3TGLpAE52ODlTwANCPpy/riqnjU5vNa+KjNcJkyN6R8c3yvfFBeBQEAzUh9XVtQedtdqdVWHoXZc51VfLN8iwgsKagNoAd6uj3eUIkhLOXIWkO1+RQWq7aowqgNoHN6uj3eqTblWFvUUuZ2dcPU5kuGLCispPaWLg63AaQm9agt0G69qE05plZj1OZsJ6B8XB4AatG52uwjadKO2pzTxnKNYvGeqqHCuDwA1KKPUZtjPNWV2qKmw5cSXCUuDwB1SfS8tqhjbT61hbRZuZS5wWCD6ZCvEI7vaBpH2QDaYRgv66u8+EM5ZwoAYIHaAGCEDENtAABJQW0AMEJObZ8485u+3h7fKqmeBKc8VM7OT0s/O6bt0xSc8Vhouvn1+a4/V/LizCfYeBOpzTm9QITLS5/Vo9p8JOnMoL7RCGh7ffr+z3W20MAbCpXtpbHdUqhtvkNJmuka1NZBI1CA2sofF0BtbXhtamHki2m7it2OXdhYREheItf7dD70fPmjUtg5y7f0wP6E9L+yHaP/tdv3taO0H9hOZZecqzpwuZX9CcwnX5/ib0TpfPhCxapeOV3doHP0ELrpDV5tYn0Z22KVxWoUrpd3lPRkfHmjgPJnoX8MLxa4tURlptbXCcS51dVov/amVbmSnb8mpUpIs5WZ2PXp60NlIw1/ibE2r2itkVDSqa29XVFdbYG19Ipdqs2X70xtdlRSY1MMR+lM+NpT2kmrNn2hhg7Cv5f+e4ndtmJ133y9hXQgth3UFlRLr3is1FaD9tSW5EsFtlND4iFKarWdkLmB5Z2/IKVjqC3vRJPalY13p7aGynOU9GSGo7YaG3xlZnHVJvGjLWcm8Hv5FCN116fSbGdqS+I1OSZqU04j6If/7fLGtFHL146zV6H992wqznwxPZ3/GNtOjXxI/yu/V2zjdvtTKxnYeWc75bk1CPleIV119qel9els3+iJbxHiKhP7pxKe15pqOqpIffFHGzSTd1t036shroXFoaHaoGMajidETm2vnh202pRxU+902asa/7chp954h7XdIym2rMGrDQAgHtQGACMkkdpq3Bsf9ToC5eG3Sj7webn2+xOURuo9lbcGvkaj8r4dq77yAF2RQm31bo+PfdNKlEFqF7Yr6pk2vJbQL4OaBuiQPtRmPzc3aCltqq08CgtpqlUvH1Zpmh+CzlAb9ERPozanGnTfOTO+krHS9KnNp7BYtcUWFtQG0IiejrXZaqh0WdSxthrS8dk2ySJq9appfgg6Q23QE4MZtTlf8GJX8TUVkgzpjM+24coLWVZYyab5IegMtUFPdK42n78qt/m21eac1j0bv4/JqA2gG4bx9nj7Y0gBJZ9KbVHT4UsJK980PwSdoTboiWG8Pb7IO0dJTfIhnTFOI9SbDvnKgUzno3ZePMke8wBdwcv6AGCEoDYAGCGoDQBGCGoDgBHSx2mEbkj1MDXlaXGOZ5SXfhaZ8I8yfwC+y4PxsQuqLD+kvwURT3/s39csP6g/ZahDHxd/DJAaTyt2PwW09NNI2tMhmS5XZ+yyBvirVroUpTbBbgsPahOR9tU2nZ+wq4S00zaobW7Wgv4pw4zBq21qYeSLabuK3Y5d2FhESF4i/+4VtXl3iDx5X+P6jnD49XHOTlYu2te+Xn4amQ9frmKxKBo/nh96JPXt8W383m3jlKfLslNqxRaul3cXtn46ZzlrNWnfOa0MG6dqMd9yG34MzIt/Xfm+slIsECy2yKR+gHj3aguspVfsRW3KNhk+aottP3DjH4LaKkdzlV0KnOWtgtoWGNSmtpNQbc5p3z4UagvsgL6UwFneKqhtgUmqtpb+ErpUW0PluQsnmtbbV9Sm72k6ZyVXW9ENW+W+oZlzcUr/Ra1eA9S2yCQ91tYS+mkE/fC/Xd6YNmr52nH2KqjzpS22ybTevsxXcc41TGerpMZyw1VlV6/M12vft9DYP88k/9WgPxbhZX3D/GMaZq8WhVjldQ+nRxecwatNGTf1zjB7NVh8Q63KIV738JtdfAavNgCAeFAbAIyQeLU5h+o1rteNer1A4MNsAQBEJE5tPn/Vu9Eq9s0pqA0Agom/h7S52vSX8im1AnsIAMeePtQmniGb7rvmr4kBgGPDYNQW+7I+X/kQJwLA2BmS2vQdVWXU5kwycAM4xnSuNp93KgWkFIhqBwCOAT2dRpDgHczAj75mnRkAGDsxajOGW85ZISgOijotwGkEAPDAy/oAYISgNgAYIagNAEbIqe0TZ7g9HgBGRrzafOcKhvaEq1SP3FKeFud4RnnpZ5EJ/1hkpta01sOA62ZaOp1if19vyfnVqH8sMr6nIvM8NagiRm3K7fGtPkC8A2o8Ldr9FNbSTyNpT4dkAr2m39fhS0YV8NQ6+lldWHWTngkpD1BivKO2KNpW23R+wq4S0o63J1VeU/KxZawqRz+rC8+Pwuy5zir6LAAPg1fb1MLIi7Wp6G91CX+9iy8vkduVojafGhRFKnupUY8b8HTVfbFheaI2+q9AXGtVUZsvj/JARBZAbWL9sfqO0SjFahSul3cXtn46ZzlrxSzF9JryMbwdmZdaE7uVPRWoNl+ychYcexZfbYG19Iq9qE05phY7aou9Ta2qw966bait8veS5LcAxwzUpraTUG3Oab+qzMJq+w71NFGbr80a7cy16deZckxAEv0W4JiB2uY/NlSeu3CiaU/jpncCnz5QidOSLaktalpPAohIzYs/jEs9fPlUOP+r6//qlfLGtFHL146zV0GdLw3KmkwHojwmoO7lHUd1485IeFZmw2lf+5V5OGYswt0Iw/xjHWavBkIHK4dxHKgMXm3KuKl3htmr4wBrHqoYvNoAAOJBbQAwQhKdIa1xDsH3rN0aOI9tK7cc8ehdgLGT6PZ453RFa+nUFt4OUgM4HqS7ri1k7qxMiosS7DYTFgOABacPtYn/slLbd8rt2ZWvfbEXyrtgAI4HSdXWZG9UOVjmvD278mr7eo8tA4BR0NONVk61+XZU690jidoAjjHpzpCGVg/wl13FnkZtAOAnhdpirwwPvH+bURsA1KWP2+N9l30opxGct2crA0D99AKCAxg73I0AACMEtQHACOlYbZknAABSgtoAYIR0fHs8agOALuj49njUBgBd0PE9pKgNALoAtQHACEl6DynH2gBgGDBqA4ARgtoAYISkvj0etQHAAEhxe7xwXRsADAvuRgCAEYLaAGCE8OQPABghqA0ARkhPb7RaFKaHAQALRYrb48tzW6IXaU490wAweDq+0aouqA0AYkj6sr6gd76Uhn6Br49Rkr5pu33fQrWueqYPG0R3AIOlc7UV5cvScdatvMlBKWC370tqnfRMA8DgSXqjVZTa7IwdSnmpUltUeXcnPdMAMHgSqc13A1ZUI1HlBbUBgJeeLv4IUZvTRL4kagOAEolujy/Prd1ISPu+pDGhnIsI76qo17VxGgFgwHA3Qi3wGsCwQW0AMEJQGwCMENQGACOkj4s/ptMpx6oAoE1Svz0+HOwGAK2R+rUv4aA2AGgN1AYAIyT1sbZwUBsAtEbHr1g2C3M+AQDaoD+1ITUAaI2O3x4/Vwu1AUBLdPz2+LkqqA0AWqK/uxFQGwC0Rh9q4+wBALQM95ACwAhBbQAwQlAbAIwQl9rW1rK1taz8sY+eAQDU5P8B35emvyqTtswAAAAASUVORK5CYII=" alt="" />

preprocess的更多相关文章

  1. hdu 1034 (preprocess optimization, property of division to avoid if, decreasing order process) 分类: hdoj 2015-06-16 13:32 39人阅读 评论(0) 收藏

    IMO, version 1 better than version 2, version 2 better than version 3. make some preprocess to make ...

  2. Data Preprocess

    本文试图解决一个问题,即我们自定义的数据如何训练模型?初识深度学习,我们接触手写数字识别模型,但是批次数据是mnist已经定义好的,我们现在有自己的图片如何做成批次进行训练模型. 现在我们将准备好的原 ...

  3. Matlab Script to pre-process UAV123 tracking dataset

    Matlab Script to pre-process UAV123 tracking dataset 2019-11-08 09:43:11 Official project page: http ...

  4. EEG preprocess - re-reference EEG预处理 - 重参考

    Source: https://blricrex.hypotheses.org/ressources/eeg/pre-processing-for-erps/re-referencing-eeg-da ...

  5. 3D人脸识别预处理,3D face recognition preprocess

    本文由兔崩溃公布http://blog.csdn.net/smartempire/article/details/31373817. 转载请注明出处.howdeshui#163.com 近期在做三维人 ...

  6. 随手记_C#验证码

    前言 最近在网上偶然看见一个验证码,觉得很有意思,于是搜了下,是使用第三方实现的,先看效果: 总体来说效果还是可以的,官方提供的SDK也比较详细,可配置性很高.在这里在简单啰嗦几句使用方式: 使用步骤 ...

  7. JAVA构造时成员初始化的陷阱

    让我们先来看两个类:Base和Derived类.注意其中的whenAmISet成员变量,和方法preProcess(). 情景1:(子类无构造方法) class Base { Base() { pre ...

  8. JS or C#?不存在的脚本之争

    前言: 又来到了周末,小匹夫也终于有了喘口气写写博客的时间和精力.话说周五的下午,小匹夫偶然间晃了一眼蛮牛的QQ群,又看到了一个Unity3D开发中老生长谈的问题,“我的开发语言究竟是选择JavaSc ...

  9. 认识ASP.NET 5项目结构和项目文件xproj

    ASP.NET 5 在项目结构上做了很大的改变,我们以前熟悉的目录结构与项目文件内容都不太一样了,本篇文章带大家了解 ASP.NET 5 到底跟以前有哪些不一样的地方. 我们先用 Visual Stu ...

随机推荐

  1. vue 之node.js 02

    文档 铺垫 以前网页制作web1.0 如今是web2.0-->交互式操作 前端工具 grunt gulp webpack :打包机 作用:将项目中的js,css,img,font,html等进行 ...

  2. Asp.net MVC 实现JSONP

    JSONP可以帮我们解决跨域访问的问题.JSONP is JSON With Padding. 这里我们将不再解释其原理.我们来看在ASP.NET MVC 3 如何实现.首先我们需要定义一个Jsonp ...

  3. SQLServer OpenRowSet 导入数据

    今早上同事要求从SQLServer2008导出一部分数据到SQLServer2000中作为演示/测试数据,开始也没想多,直接去SQLServer2000的企业管理器中,用了数据导入的功能.以为完事了, ...

  4. BZOJ1085 SCOI2005 骑士精神【IDA* 启发式迭代加深】

    BZOJ1085 SCOI2005 骑士精神 Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐 ...

  5. BZOJ1208 HNOI2004 宠物收养所 【非旋转Treap】

    BZOJ1208 HNOI2004 宠物收养所 Description 最近,阿Q开了一间宠物收养所.收养所提供两种服务:收养被主人遗弃的宠物和让新的主人领养这些宠物.每个领养者都希望领养到自己满意的 ...

  6. 《DSP using MATLAB》示例Example 8.18

    代码: %% ------------------------------------------------------------------------ %% Output Info about ...

  7. 同一台电脑上装两个或两个以上的tomcat服务器

    1.下载免安装版tomcat,解压成tomcat1.tomcat2: 2.修改tomcat2中conf下server.xml文件如下: <Server port="8005" ...

  8. 记录一些WPF常用样式方便以后复用(转)

    TextBox文本框 <Style x:Key="TextBoxStyle1" BasedOn="{x:Null}" TargetType="{ ...

  9. hashids 了解

    用于隐藏真实的id 原理是从数字经过一个加盐(salted)算法产生一个哈希(hash)字符串.这样算法就是通过混淆使结果具有不可预测性,而唯一性依然由数字本身来达成,从而得到(类似 youtube ...

  10. git 获取远程分支

    另一哥们将分支push到库中,我怎么获取到他的分支信息呢? 如果安装了git客户端,直接选择fetch一下,就可以获取到了. 如果用命令行,运行 git fetch,可以将远程分支信息获取到本地,再运 ...