[POI2014]Hotel
题目大意:
给你一颗$n(n\le5000)$个点的树,选3个点使得它们两两距离相等,问共有几种选法。
思路:
首先我们不难发现一个性质:对于每3个符合条件的点,我们总能找到一个点使得这个点到那3个点距离相等。
我们不妨称之为“中转点”。
显然答案就是对于每个中转点,不同子树中到这个点距离相等的三元点对的数量。
我们可以先枚举每个点作为中转点的情况。
暴力求出以这个点的每个子结点为根的子树,不同深度的结点的数量(显然深度就是到这个中转点的距离)。
我们可以用calc[i][j]表示对于当前中转点,来自j个不同子树的深度为i的结点共有多少种不同的组合。
转移方程为calc[i][j]+=calc[i][j-1]*cnt[i]。
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
int n,cnt[N];
int64 calc[N][];
void dfs(const int &x,const int &par,const int &dep) {
cnt[dep]++;
for(unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
dfs(y,x,dep+);
}
}
int main() {
n=getint();
for(register int i=;i<n;i++) {
add_edge(getint(),getint());
}
int64 ans=;
for(register int x=;x<=n;x++) {
memset(calc,,sizeof calc);
for(register int i=;i<=n;i++) calc[i][]=;
for(register unsigned i=;i<e[x].size();i++) {
memset(cnt,,sizeof cnt);
const int &y=e[x][i];
dfs(y,x,);
for(register int j=;j;j--) {
for(register int i=;i<=n;i++) {
calc[i][j]+=calc[i][j-]*cnt[i];
}
}
}
for(register int i=;i<=n;i++) {
ans+=calc[i][];
}
}
printf("%lld\n",ans);
return ;
} 现在考虑当$n\le10^5$的情况。
考虑$n\le10^5$的情况。
$f[i][j]$标示以$i$为根的子树中,与$i$距离为$j$的点数。$g[i][j]$标示以$i$为根的子树中,与$i$距离为$j$的点对数。则不难想到一种$O(n^2)$的转移:
$$
\begin{align*}
&g[x][i-1]+=g[y][i]\\
&g[x][i+1]+=f[x][i+1]\times f[y][i]\\
&f[x][i+1]+=f[y][i]
\end{align*}
$$
边界为$f[x][0]=1$。
考虑优化这个转移,不难发现,若$y$是$x$枚举到的第一个子结点,则转移时只进行第一、第三个转移。因此我们可以考虑通过指针来实现,免去转移的过程。
将原树进行长链剖分,对于重边直接修改指针,对于轻边暴力转移,可以证明这样是$O(n)$的。
#include<list>
#include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
std::list<int> e[N];
int dep[N],bot[N];
int64 mem[N*],ans,*f[N],*g[N],*ptr=mem;
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
void dfs(const int &x,const int &par) {
dep[bot[x]=x]=dep[par]+;
for(std::list<int>::iterator i=e[x].begin();i!=e[x].end();i++) {
const int &y=*i;
if(y==par) continue;
dfs(y,x);
if(dep[bot[y]]>dep[bot[x]]) bot[x]=bot[y];
}
for(register std::list<int>::iterator i=e[x].begin();i!=e[x].end();i++) {
const int &y=*i;
if(y==par||(bot[y]==bot[x]&&x!=)) continue;
f[bot[y]]=ptr+=dep[bot[y]]-dep[x]+;
g[bot[y]]=++ptr;
ptr+=(dep[bot[y]]-dep[x])*+;
}
}
void dp(const int &x,const int &par) {
for(std::list<int>::iterator i=e[x].begin();i!=e[x].end();i++) {
const int &y=*i;
if(y==par) continue;
dp(y,x);
if(bot[y]==bot[x]) {
f[x]=f[y]-;
g[x]=g[y]+;
}
}
ans+=g[x][];
f[x][]=;
for(register std::list<int>::iterator i=e[x].begin();i!=e[x].end();i++) {
const int &y=*i;
if(y==par||bot[y]==bot[x]) continue;
for(register int i=;i<=dep[bot[y]]-dep[x];i++) {
ans+=f[x][i-]*g[y][i]+g[x][i+]*f[y][i];
}
for(register int i=;i<=dep[bot[y]]-dep[x];i++) {
g[x][i-]+=g[y][i];
g[x][i+]+=f[x][i+]*f[y][i];
f[x][i+]+=f[y][i];
}
}
}
int main() {
const int n=getint();
for(register int i=;i<n;i++) {
add_edge(getint(),getint());
}
dfs(,);
dp(,);
printf("%lld\n",ans);
return ;
}
[POI2014]Hotel的更多相关文章
- BZOJ3522: [Poi2014]Hotel
3522: [Poi2014]Hotel Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 195 Solved: 85[Submit][Status] ...
- 3522: [Poi2014]Hotel( 树形dp )
枚举中点x( 即选出的三个点 a , b , c 满足 dist( x , a ) = dist( x , b ) = dist( x , c ) ) , 然后以 x 为 root 做 dfs , 显 ...
- 3522: [Poi2014]Hotel
3522: [Poi2014]Hotel Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 253 Solved: 117[Submit][Status ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
- 4543: [POI2014]Hotel加强版
4543: [POI2014]Hotel加强版 链接 分析: f[u][i]表示子树u内,距离u为i的点的个数,g[u][i]表示在子树u内,已经选了两个深度一样的点,还需要在距离u为i的一个点作为第 ...
- BZOJ4543 POI2014 Hotel加强版 【长链剖分】【DP】*
BZOJ4543 POI2014 Hotel加强版 Description 同OJ3522 数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 4 ...
- 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP
[BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...
- 【BZOJ3522】[Poi2014]Hotel 树形DP
[BZOJ3522][Poi2014]Hotel Description 有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达.吉丽要给他的三个妹子各开(一个)房 ...
- bzoj4543[POI2014]Hotel
题目链接 bzoj4543 [POI2014]Hotel 题解 这不是裸地点分嘛 ,我真傻,真的 n^2 这不是是sb题,~滑稽 ~ 枚举点转换为无根树,暴力子树中点的深度 计数转移 令a b c d ...
- bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...
随机推荐
- Install the Active Directory Administration Tools on Windows Server
安装 Active Directory 管理工具 To manage your directory from an EC2 Windows instance, you need to install ...
- dbcp重连问题排查
转载自:http://lc87624.iteye.com/blog/1734089 使用数据库连接池时,免不了会遇到断网.数据库挂掉等异常状况,当网络或数据库恢复时,若无法恢复连接池中的连接,那必然会 ...
- php 计算两个日期的间隔天数
使用php内部自带函数实现 1.使用DateTime::diff 实现计算 参考阅读>>PHP DateTime::diff() 上代码: <?php $start = " ...
- js闭包,原型,作用域等再一次理解
要理解闭包,原型等,首先要理解作用域 作用域:就是函数在定义的时候创建的,用于寻找使用到的变量的值的一个索引,而他内部的规则是,把函数自身的本地变量放在最前面,把自身的父级函数中的变量放在其次,把再高 ...
- js实现2048小游戏
这是学完javascript基础,编写的入门级web小游戏 游戏规则:在玩法规则也非常的简单,一开始方格内会出现2或者4等这两个小数字,玩家只需要上下左右其中一个方向来移动出现的数字,所有的数字就会想 ...
- 好几次的CSS存档
第一次: #site_nav_under { display: none; } .c_ad_block, .ad_text_commentbox { display: none; margin:; p ...
- bzoj 2662&bzoj 2763 SPFA变形
我们用dis[i,j]代表到i这个点,用j张票的最短路程,那么我们只需要在SPFA更新 的时候,用dis[i,j]更新dis[p,j]和dis[p,j+1]就行了 /***************** ...
- 【转】vs2015一键卸载干净
插件是国外的一位同行写的,偶然在网上发现感觉挺好用,分享一下. 第二步.下载工具并解压 网盘下载地址:https://pan.baidu.com/s/1eSHRYxW 也可以在Github上下载最新版 ...
- Linux curl命令【curl】
命令:curl 在Linux中curl是一个利用URL规则在命令行下工作的文件传输工具,可以说是一款很强大的http命令行工具.它支持文件的上传和下载,是综合传输工具,但按传统,习惯称url为下载工具 ...
- web前端 html基础2
表单标签<form></form> input系列标签 text 文本输入框 placeholder 默认的属性,输入时消失 password 密码输入框 radio 单选框 ...