题目大意:
  给你一颗$n(n\le5000)$个点的树,选3个点使得它们两两距离相等,问共有几种选法。

思路:
  首先我们不难发现一个性质:对于每3个符合条件的点,我们总能找到一个点使得这个点到那3个点距离相等。
  我们不妨称之为“中转点”。
  显然答案就是对于每个中转点,不同子树中到这个点距离相等的三元点对的数量。
  我们可以先枚举每个点作为中转点的情况。
  暴力求出以这个点的每个子结点为根的子树,不同深度的结点的数量(显然深度就是到这个中转点的距离)。
  我们可以用calc[i][j]表示对于当前中转点,来自j个不同子树的深度为i的结点共有多少种不同的组合。
  转移方程为calc[i][j]+=calc[i][j-1]*cnt[i]。

 #include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
int n,cnt[N];
int64 calc[N][];
void dfs(const int &x,const int &par,const int &dep) {
cnt[dep]++;
for(unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
dfs(y,x,dep+);
}
}
int main() {
n=getint();
for(register int i=;i<n;i++) {
add_edge(getint(),getint());
}
int64 ans=;
for(register int x=;x<=n;x++) {
memset(calc,,sizeof calc);
for(register int i=;i<=n;i++) calc[i][]=;
for(register unsigned i=;i<e[x].size();i++) {
memset(cnt,,sizeof cnt);
const int &y=e[x][i];
dfs(y,x,);
for(register int j=;j;j--) {
for(register int i=;i<=n;i++) {
calc[i][j]+=calc[i][j-]*cnt[i];
}
}
}
for(register int i=;i<=n;i++) {
ans+=calc[i][];
}
}
printf("%lld\n",ans);
return ;
}   现在考虑当$n\le10^5$的情况。

  考虑$n\le10^5$的情况。
  $f[i][j]$标示以$i$为根的子树中,与$i$距离为$j$的点数。$g[i][j]$标示以$i$为根的子树中,与$i$距离为$j$的点对数。则不难想到一种$O(n^2)$的转移:
  $$
  \begin{align*}
  &g[x][i-1]+=g[y][i]\\
  &g[x][i+1]+=f[x][i+1]\times f[y][i]\\
  &f[x][i+1]+=f[y][i]
  \end{align*}
  $$
  ​边界为$f[x][0]=1$。
  考虑优化这个转移,不难发现,若$y$是$x$枚举到的第一个子结点,则转移时只进行第一、第三个转移。因此我们可以考虑通过指针来实现,免去转移的过程。
  将原树进行长链剖分,对于重边直接修改指针,对于轻边暴力转移,可以证明这样是$O(n)$的。

 #include<list>
#include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
std::list<int> e[N];
int dep[N],bot[N];
int64 mem[N*],ans,*f[N],*g[N],*ptr=mem;
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
void dfs(const int &x,const int &par) {
dep[bot[x]=x]=dep[par]+;
for(std::list<int>::iterator i=e[x].begin();i!=e[x].end();i++) {
const int &y=*i;
if(y==par) continue;
dfs(y,x);
if(dep[bot[y]]>dep[bot[x]]) bot[x]=bot[y];
}
for(register std::list<int>::iterator i=e[x].begin();i!=e[x].end();i++) {
const int &y=*i;
if(y==par||(bot[y]==bot[x]&&x!=)) continue;
f[bot[y]]=ptr+=dep[bot[y]]-dep[x]+;
g[bot[y]]=++ptr;
ptr+=(dep[bot[y]]-dep[x])*+;
}
}
void dp(const int &x,const int &par) {
for(std::list<int>::iterator i=e[x].begin();i!=e[x].end();i++) {
const int &y=*i;
if(y==par) continue;
dp(y,x);
if(bot[y]==bot[x]) {
f[x]=f[y]-;
g[x]=g[y]+;
}
}
ans+=g[x][];
f[x][]=;
for(register std::list<int>::iterator i=e[x].begin();i!=e[x].end();i++) {
const int &y=*i;
if(y==par||bot[y]==bot[x]) continue;
for(register int i=;i<=dep[bot[y]]-dep[x];i++) {
ans+=f[x][i-]*g[y][i]+g[x][i+]*f[y][i];
}
for(register int i=;i<=dep[bot[y]]-dep[x];i++) {
g[x][i-]+=g[y][i];
g[x][i+]+=f[x][i+]*f[y][i];
f[x][i+]+=f[y][i];
}
}
}
int main() {
const int n=getint();
for(register int i=;i<n;i++) {
add_edge(getint(),getint());
}
dfs(,);
dp(,);
printf("%lld\n",ans);
return ;
}

[POI2014]Hotel的更多相关文章

  1. BZOJ3522: [Poi2014]Hotel

    3522: [Poi2014]Hotel Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 195  Solved: 85[Submit][Status] ...

  2. 3522: [Poi2014]Hotel( 树形dp )

    枚举中点x( 即选出的三个点 a , b , c 满足 dist( x , a ) = dist( x , b ) = dist( x , c ) ) , 然后以 x 为 root 做 dfs , 显 ...

  3. 3522: [Poi2014]Hotel

    3522: [Poi2014]Hotel Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 253  Solved: 117[Submit][Status ...

  4. 【刷题】BZOJ 4543 [POI2014]Hotel加强版

    Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...

  5. 4543: [POI2014]Hotel加强版

    4543: [POI2014]Hotel加强版 链接 分析: f[u][i]表示子树u内,距离u为i的点的个数,g[u][i]表示在子树u内,已经选了两个深度一样的点,还需要在距离u为i的一个点作为第 ...

  6. BZOJ4543 POI2014 Hotel加强版 【长链剖分】【DP】*

    BZOJ4543 POI2014 Hotel加强版 Description 同OJ3522 数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 4 ...

  7. 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP

    [BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...

  8. 【BZOJ3522】[Poi2014]Hotel 树形DP

    [BZOJ3522][Poi2014]Hotel Description 有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达.吉丽要给他的三个妹子各开(一个)房 ...

  9. bzoj4543[POI2014]Hotel

    题目链接 bzoj4543 [POI2014]Hotel 题解 这不是裸地点分嘛 ,我真傻,真的 n^2 这不是是sb题,~滑稽 ~ 枚举点转换为无根树,暴力子树中点的深度 计数转移 令a b c d ...

  10. bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...

随机推荐

  1. Install the Active Directory Administration Tools on Windows Server

    安装 Active Directory 管理工具 To manage your directory from an EC2 Windows instance, you need to install ...

  2. dbcp重连问题排查

    转载自:http://lc87624.iteye.com/blog/1734089 使用数据库连接池时,免不了会遇到断网.数据库挂掉等异常状况,当网络或数据库恢复时,若无法恢复连接池中的连接,那必然会 ...

  3. php 计算两个日期的间隔天数

    使用php内部自带函数实现 1.使用DateTime::diff 实现计算 参考阅读>>PHP DateTime::diff() 上代码: <?php $start = " ...

  4. js闭包,原型,作用域等再一次理解

    要理解闭包,原型等,首先要理解作用域 作用域:就是函数在定义的时候创建的,用于寻找使用到的变量的值的一个索引,而他内部的规则是,把函数自身的本地变量放在最前面,把自身的父级函数中的变量放在其次,把再高 ...

  5. js实现2048小游戏

    这是学完javascript基础,编写的入门级web小游戏 游戏规则:在玩法规则也非常的简单,一开始方格内会出现2或者4等这两个小数字,玩家只需要上下左右其中一个方向来移动出现的数字,所有的数字就会想 ...

  6. 好几次的CSS存档

    第一次: #site_nav_under { display: none; } .c_ad_block, .ad_text_commentbox { display: none; margin:; p ...

  7. bzoj 2662&bzoj 2763 SPFA变形

    我们用dis[i,j]代表到i这个点,用j张票的最短路程,那么我们只需要在SPFA更新 的时候,用dis[i,j]更新dis[p,j]和dis[p,j+1]就行了 /***************** ...

  8. 【转】vs2015一键卸载干净

    插件是国外的一位同行写的,偶然在网上发现感觉挺好用,分享一下. 第二步.下载工具并解压 网盘下载地址:https://pan.baidu.com/s/1eSHRYxW 也可以在Github上下载最新版 ...

  9. Linux curl命令【curl】

    命令:curl 在Linux中curl是一个利用URL规则在命令行下工作的文件传输工具,可以说是一款很强大的http命令行工具.它支持文件的上传和下载,是综合传输工具,但按传统,习惯称url为下载工具 ...

  10. web前端 html基础2

    表单标签<form></form> input系列标签 text 文本输入框 placeholder 默认的属性,输入时消失 password 密码输入框 radio 单选框 ...