Dijkstra 算法解决的是带权重的有向图上单源最短路径问题,该算法要求所有边的权重都为非负值。该算法的时间复杂度是O(N2),相比于处理无负权的图时,比Bellmad-Ford算法效率更高。

算法描述:

首先引用《算法导论》中的一段比较官方的话,如果可以看懂,那下一部分就可以跳过了:

“Dijkstra算法在运行过程中维持的关键信息是一组结点集合S。从源结点s到该集合中每个结点之间的最短路径已经被找到。算法重复从结点集 V - S 中算则最短路径估计的最小的结点 u ,将 u 加入到集合S,然后对所有从 u 出发的边进行松弛。” 所谓松弛操作,简单的说就是更新两点间的最短距离。

不是很好理解对吧,那么下面的描述是更容易理解的一种描述:

设起始点为s,dis[v]表示s点到v点的最短路径,pre[v]是v的前驱结点,用来输出路径。

1、初始化:dis[v]=∞(v≠s) dis[s]=0,pre[s]=0;

2、for(i=1;i<=n;i++)

(1)在没有被访问过的点中,即上述的V - S集合,找到一个点 u 使得dis[u]是最小的。

(2)标记 u 为已确定的最短路径。

(3)for(每个与 u 相连且没有确定过最短距离的点 v)

if(dis[u]+m[u][v]<dis[v]){

dis[v]=dis[u]+m[u][v];

pre[v]=u;

}

3、结束:结果dis[v]就是s到v的最短距离。

算法理解:

其中自以为有几点理解需要说明:

1、为什么用到中间点?

2、取s到中间点的距离时采用什么策略?

第一个问题,从起点到另一个点的最短路径至少会经历一个中间点,所以我们要求出经过这个中间的到另一个点的路径,就要先求出起点到中间点的最短路径。

第二个问题,其实这里采用的是一中贪心的策略。当然这个策略可以被严格证明是正确的,但是我也一知半解,只知道是可以被证明的,在这里也就不浪费时间了。(详细可以参考《算法导论》)

最后,解释一下为什么有负权边的时候不可以:

连接矩阵如下(图可以自己在旁边画一下):

1 2 3

1 \ 2 1

2 2 \ -4

3 1 -4 \

那么第一次标记的点就为3并且把dis[3]记为1,但实际上dis[3]应该时-2,因此就会出现错误。

最后附上一段不那么标准的代码:

 #include<stdio.h>
#include<stdlib.h>
int m[][],e,dist[],n,b[],pre[],dist[];
void dij(int s){
b[s]=;
int i,j;
for(i=;i<=n;i++)
dist[i]=m[s][i];
dist[s]=;
pre[s]=; for(i=;i<=n;i++){
int min=,k=;
for(j=;j<=n;j++)
if(b[j]!= && dist[j]<min)
{min=dist[j];k=j;}
b[k]=;
for(j=;j<=n;j++)
if(min+m[k][j]<dist[j]&&b[j]!=)
{
dist[j]=min+m[k][j];
pre[j]=i;
}
}
for(i=;i<=n;i++)
if(i!=s)
printf("%d ",dist[i]);
}
int main(){
int i,j;
scanf("%d%d",&n,&e);
memset(b,,sizeof(b));
memset(m,,sizeof(m));
for(i=;i<=e;i++){
int x,y;
scanf("%d%d",&x,&y);
scanf("%d",&m[x][y]);
}
int w;
scanf("%d",&w);
dij(w);
system("pause");
return ;
}

最短路径算法 2.Dijkstra算法的更多相关文章

  1. 最短路径算法(Dijkstra算法、Floyd-Warshall算法)

    最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 确定终点的最短路径问题:即已知终结结点,求最短路径的问题.在无向图中,该问题与确 ...

  2. C++编程练习(11)----“图的最短路径问题“(Dijkstra算法、Floyd算法)

    1.Dijkstra算法 求一个顶点到其它所有顶点的最短路径,是一种按路径长度递增的次序产生最短路径的算法. 算法思想: 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的 ...

  3. 最短路径问题的Dijkstra算法

      问题 最短路径问题的Dijkstra算法 是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出.迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法终于得到一个最短路径树>    ...

  4. 【算法】Dijkstra算法(单源最短路径问题)(路径还原) 邻接矩阵和邻接表实现

    Dijkstra算法可使用的前提:不存在负圈. 负圈:负圈又称负环,就是说一个全部由负权的边组成的环,这样的话不存在最短路,因为每在环中转一圈路径总长就会边小. 算法描述: 1.找到最短距离已确定的顶 ...

  5. 单源最短路径问题2 (Dijkstra算法)

    用邻接矩阵 /* 单源最短路径问题2 (Dijkstra算法) 样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9 ...

  6. 数据结构与算法系列研究七——图、prim算法、dijkstra算法

    图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph ...

  7. Prim算法、Kruskal算法、Dijkstra算法

    无向加权图 1.生成树(minimum spanning trees) 图的生成树是它一棵含有所有顶点的无环联通子图 最小生成树:生成树中权值和最小的(所有边的权值之和) Prim算法.Kruskal ...

  8. 算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法

    一.名称 动态规划法应用 二.目的 1.贪婪技术的基本思想: 2.学会运用贪婪技术解决实际设计应用中碰到的问题. 三.要求 1.实现基于贪婪技术思想的Prim算法: 2.实现基于贪婪技术思想的Dijk ...

  9. 最短路径算法之Dijkstra算法(java实现)

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...

  10. 图中最短路径算法(Dijkstra算法)(转)

    1.Dijkstra 1)      适用条件&范围: a)   单源最短路径(从源点s到其它所有顶点v); b)   有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E ...

随机推荐

  1. Oracle 11.1.0.6 导入导出bug

    实验环境: 11.1.0.6.0   对ANONYMOUSUSER_ALL表中分区进行备份 SQL> select TABLE_NAME,PARTITION_NAME,HIGH_VALUE,PA ...

  2. Python3基本数据类型(一、数字类型)

    第一次写博客,感觉心情比较紧张,有一种要上台演讲的紧张感(虽然可能大概也许不会有人看).在此立个flag,以后每个学习阶段都要写一篇博客,来记录自己学习成长的这段日子.Fighting! 废话不多说, ...

  3. MySQL学习(三)函数

    一.数学函数 绝对值函数ABS():ABS(X) 返回圆周率函数PI() 平方根函数SQRT() 求余函数MOD(X,Y) 获取整数函数CEIL(X),CEILING(X)返回不小于X的最小整数:FL ...

  4. Android(java)学习笔记25:Android 手机拨号

    1. 手机拨号程序:(只有程序代码) package cn.itcast.phone; import android.app.Activity; import android.content.Inte ...

  5. Gym 101334C 无向仙人掌

    给出图,求他的“仙人掌度”,即求包括他自身的生成子图有多少? 只能删去仙人掌上的叶子的一条边,然后根据乘法原理相乘: 1.怎么求一个仙人掌叶子上有多少边? 可以利用点,边双连通的时间戳这个概念,但是绝 ...

  6. HDU 5025 Saving Tang Monk 【状态压缩BFS】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=5025 Saving Tang Monk Time Limit: 2000/1000 MS (Java/O ...

  7. GreenPlum 与hadoop什么关系?(转)

    没关系. gp 可以处理大量数据, hadoop 可以处理海量. gp 只能处理湖量,或者河量. 无法处理海量. 作者:SallyLeo链接:https://www.zhihu.com/questio ...

  8. 单独使用JDBC编程

    一.jdbc编程步骤 1. 加载数据库驱动 2. 创建并获取数据库链接 3. 创建jdbc statement对象 4. 设置sql语句 5. 设置sql语句中的参数(使用preparedStatem ...

  9. HBuilder实现WiFi调试Android

    要求手机是开发模式 wifi实现 条件:已ROOT手机.手机和电脑需要在一个网段 第一步:安装在应用商店下载WiFi ADB (注意这里显示的ip等下使用) 第二步:打开WIFI ADB 第三步:切换 ...

  10. MR中使用sequnceFIle输入文件

    转换原始数据为块压缩的SequenceFIle import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.C ...