简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术:

自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思

这就要做 : 语义相似度

接下来我们用Python大法来实现一个简单的自然语言处理

现在又要用到Python强大的三方库了

第一个是将中文字符串进行分词的库叫 jieba

pip install jieba

我们通常把这个库叫做 结巴分词 确实是结巴分词,而且这个词库是 made in china , 基本用一下这个结巴分词:

import jieba

key_word = "你叫什么名字"  # 定义一句话,基于这句话进行分词

cut_word = jieba.cut(key_word)  # 使用结巴分词中的cut方法对"你叫什么名字" 进行分词

print(cut_word)  # <generator object Tokenizer.cut at 0x03676390> 不懂生成器的话,就忽略这里

cut_word_list = list(cut_word)  # 如果不明白生成器的话,这里要记得把生成器对象做成列表

print(cut_word_list)  # ['你', '叫', '什么', '名字']

测试代码就很明显了,它很清晰的把咱们的中文字符串转为列表存储起来了

第二个是一个语言训练库叫 gensim

pip install gensim

这个训练库很厉害, 里面封装很多机器学习的算法, 是目前人工智能的主流应用库,这个不是很好理解, 需要一定的Python数据处理的功底

import jieba
import gensim
from gensim import corpora
from gensim import models
from gensim import similarities l1 = ["你的名字是什么", "你今年几岁了", "你有多高你胸多大", "你胸多大"]
a = "你今年多大了" all_doc_list = []
for doc in l1:
doc_list = [word for word in jieba.cut(doc)]
all_doc_list.append(doc_list) print(all_doc_list)
doc_test_list = [word for word in jieba.cut(a)] # 制作语料库
dictionary = corpora.Dictionary(all_doc_list) # 制作词袋
# 词袋的理解
# 词袋就是将很多很多的词,进行排列形成一个 词(key) 与一个 标志位(value) 的字典
# 例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6, '几岁': 7, '多': 8, '有': 9, '胸多大': 10, '高': 11}
# 至于它是做什么用的,带着问题往下看 print("token2id", dictionary.token2id)
print("dictionary", dictionary, type(dictionary)) corpus = [dictionary.doc2bow(doc) for doc in all_doc_list]
# 语料库:
# 这里是将all_doc_list 中的每一个列表中的词语 与 dictionary 中的Key进行匹配
# 得到一个匹配后的结果,例如['你', '今年', '几岁', '了']
# 就可以得到 [(1, 1), (5, 1), (6, 1), (7, 1)]
# 1代表的的是 你 1代表出现一次, 5代表的是 了 1代表出现了一次, 以此类推 6 = 今年 , 7 = 几岁
print("corpus", corpus, type(corpus)) # 将需要寻找相似度的分词列表 做成 语料库 doc_test_vec
doc_test_vec = dictionary.doc2bow(doc_test_list)
print("doc_test_vec", doc_test_vec, type(doc_test_vec)) # 将corpus语料库(初识语料库) 使用Lsi模型进行训练
lsi = models.LsiModel(corpus)
# 这里的只是需要学习Lsi模型来了解的,这里不做阐述
print("lsi", lsi, type(lsi))
# 语料库corpus的训练结果
print("lsi[corpus]", lsi[corpus])
# 获得语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示
print("lsi[doc_test_vec]", lsi[doc_test_vec]) # 文本相似度
# 稀疏矩阵相似度 将 主 语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))
print("index", index, type(index)) # 将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 与 语料库corpus的 向量表示 做矩阵相似度计算
sim = index[lsi[doc_test_vec]] print("sim", sim, type(sim)) # 对下标和相似度结果进行一个排序,拿出相似度最高的结果
# cc = sorted(enumerate(sim), key=lambda item: item[1],reverse=True)
cc = sorted(enumerate(sim), key=lambda item: -item[1])
print(cc) text = l1[cc[0][0]] print(a,text)

前方高能

 
 
 

3,jieba gensim 最好别分家之最简单的相似度实现的更多相关文章

  1. Python人工智能之路 - 第四篇 : jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  2. jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  3. python 全栈开发,Day133(玩具与玩具之间的对话,基于jieba gensim pypinyin实现的自然语言处理,打包apk)

    先下载github代码,下面的操作,都是基于这个版本来的! https://github.com/987334176/Intelligent_toy/archive/v1.6.zip 注意:由于涉及到 ...

  4. jieba gensim 用法

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  5. jieba gensim 相似度实现

    博客引自:https://www.cnblogs.com//DragonFire/p/9220523.html 简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字 ...

  6. before_request after_request

    Flask我们已经学习很多基础知识了,现在有一个问题 我们现在有一个 Flask 程序其中有3个路由和视图函数,如下: from flask import Flask app = Flask(__na ...

  7. 文本相似度分析(基于jieba和gensim)

    基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim: ...

  8. Gensim进阶教程:训练word2vec与doc2vec模型

    本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现. Word2vec Word2vec并不是一个模型--它其 ...

  9. 自然语言处理之jieba分词

    在处理英文文本时,由于英文文本天生自带分词效果,可以直接通过词之间的空格来分词(但是有些人名.地名等需要考虑作为一个整体,比如New York).而对于中文还有其他类似形式的语言,我们需要根据来特殊处 ...

随机推荐

  1. GridView中的更新按钮不能触发RowUpdating事件

    当点击“编辑”按钮以后,可以看到“更新”和“取消”按钮,“取消”按钮可以正常触发RowCancelingEdit事件,但是“更新”按钮不能触发RowUpdating事件. 解决方案: 在<asp ...

  2. 改写python round()函数,解决四舍五入问题 round(1.365,2)=1.36

    round()函数四舍五入存在一个问题,遇到5不一定进一.如下图所示: print(round(1.365,2)) #1.36 没进一 print('%.2f'%1.365) print(round( ...

  3. 【[AHOI2012]树屋阶梯】

    卡特兰数! 至于为什么是卡特兰数,就稍微说那么一两句吧 对于一个高度为\(i\)的阶梯,我们可以在左上角填一个高度为\(k\)的阶梯,右下角填一个高度为\(i-1-k\)的阶梯剩下的我们用一个大的长方 ...

  4. L1 loss L2 loss

    https://www.letslearnai.com/2018/03/10/what-are-l1-and-l2-loss-functions.html http://rishy.github.io ...

  5. logback.xml常用配置

    一.logback的介绍 Logback是由log4j创始人设计的又一个开源日志组件.logback当前分成三个模块:logback-core,logback- classic和logback-acc ...

  6. JavaScript高阶函数map/reduce、filter和sort

    map() 举例说明,比如我们有一个函数f(x)=x²,要把这个函数作用在一个数组[1,2,3,4,5,6,7,8,9]上. 由于map()方法定义在JavaScript的Array中,我们调用Arr ...

  7. 学习Node.js知识小结

    什么是Node.js 官方解释:Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境. Node.js使用了一个事件驱动.非阻塞式I/O的模型( Node.js的特性 ...

  8. 菜鸟崛起 DB Chapter 2 MySQL 5.6的概述与安装

    在上文菜鸟崛起 DB Chapter 1 数据库概述我们初步认识了数据库,也知道市面上常见的几种数据库,下面我们就针对常见的MySQL数据库展开对DataBase的探讨. 2.1  MySQL介绍 M ...

  9. oracle net manager 数据传输安全

    oracle net manager来加密客户端与数据库之间或中间件与 数据库之间的网络传输数据 第一步:开始-->所有程序 -->oracle --> 配置和移植工具 --> ...

  10. MySQL的数据类型(一)

    每一个常量.变量和参数都有数据类型.它用来指定一定的存储格式.约束和有效范围.MySQL提供了多种数据类型.主要有数值型.字符串类型.日期和时间类型.不同的MySQL版本支持的数据类型可能会稍有不同. ...