POJ-3579 Median---二分第k大(二分套二分)
题目链接:
https://cn.vjudge.net/problem/POJ-3579
题目大意:
求的是一列数所有相互之间差值的序列的最中间的值是多少。
解题思路:
可以用二分套二分的方法求解第m大,和POJ-3685类似,这里的模板也差不多
枚举第m大x,判断小于等于x的数目是不是大于m,如果大于m说明x >= 第m大,调整区间r = mid - 1
不然l = mid + 1
此处是大于m而不是小于m是因为一个数可能出现多次,那么小于等于中间的数目可能就比m大
在计算小于等于x的数目的时候,用upperlower函数求解即可
一开始TLE是因为左右区间没选好,应该选给定的数字中的最大值减最小值作为右区间
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
const ll INF = 1e9 + ;
const int maxn = 1e6 + ;
ll a[maxn], n, m; ll ok(ll mid)
{
ll ans = ;
for(int i = ; i < n; i++)//此处不等于n是由于到了n没有比它更大的了,加上=也无妨
{
if(a[i] + mid >= a[n])//可以加速一点
{
ans += n - i;
continue;
}
int t = upper_bound(a + i, a + n + , a[i] + mid) - a;//这里用区间a+i而不是a+1可以加速求解
ans += t - - i;
}
return ans;
}
int main()
{
while(scanf("%lld", &n) != EOF)
{
for(int i = ; i <= n; i++)scanf("%lld", &a[i]);
sort(a + , a + n + );
m = n * (n - ) / ;
m = (m + ) / ;//求出第m个
ll l = , r = a[n] - a[], ans;
while(l <= r)
{
ll mid = (l + r) / ;
if(ok(mid) >= m)//小于等于mid的数字个数 >= m 说明mid>=最优解
{
ans = mid;
r = mid - ;
}
else l = mid + ;
}
printf("%lld\n", ans);
}
return ;
}
POJ-3579 Median---二分第k大(二分套二分)的更多相关文章
- 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)
Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...
- POJ 3579 Median 二分加判断
Median Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12453 Accepted: 4357 Descripti ...
- poj 3579 Median 二分套二分 或 二分加尺取
Median Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5118 Accepted: 1641 Descriptio ...
- 51 NOD 1685 第K大区间2 二分+BIT
题目描述: 定义一个长度为奇数的区间的值为其所包含的的元素的中位数. 现给出n个数,求将所有长度为奇数的区间的值排序后,第K大的值为多少. 样例解释: [l,r]表示区间的值 [1]:3 [2]:1 ...
- 51nod 第K大区间2(二分+树状数组)
题目链接: 第K大区间2 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 定义一个长度为奇数的区间的值为其所包含的的元素的中位数.中位数_百度百科 现给出n个数,求将所有长度为 ...
- [51NOD1105]第k大的数(二分答案)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1105 先排序,二分上下界分别是最小的两个数和最大的两个数的乘积 ...
- ACM学习历程—51NOD 1685 第K大区间2(二分 && 树状数组 && 中位数)
http://www.51nod.com/contest/problem.html#!problemId=1685 这是这次BSG白山极客挑战赛的E题. 这题可以二分答案t. 关键在于,对于一个t,如 ...
- 1105 第K大的数(二分)
1105 第K大的数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 数组A和数组B,里面都有n个整数.数组C共有n^2个整数,分别是A[0] * B[0],A[0 ...
- ZOJ 1112 Dynamic Rankings【动态区间第K大,整体二分】
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1112 题意: 求动态区间第K大. 分析: 把修改操作看成删除与增加 ...
- POJ 2104 && POJ 2761 (静态区间第k大,主席树)
查询区间第K大,而且没有修改. 使用划分树是可以做的. 作为主席树的入门题,感觉太神奇了,Orz /* *********************************************** ...
随机推荐
- IOS下去掉input submit圆角和背景色错误
在iOS系统下input submit会有圆角,如果添加有背景色,背景色错误,在安卓系统是没有这些问题,可以在input样式加上这段样式 input{ -webkit-appearance: none ...
- oracle 单实例DG(搭建篇一)
一,介绍 lodding... 二,安装前环境配置 01,依赖包的安装: yum install binutils-* yum install compat-libstdc++-* yum insta ...
- hibernateAPI详解
1 Configuration package www.test.b_api; import org.hibernate.Session; import org.hibernate.SessionFa ...
- Fragment、Activity比较——Android碎片介绍
Fragment是Android honeycomb 3.0新增的概念,Fragment名为碎片不过却和Activity十分相似,下面介绍下Android Fragment的作用和用法.Fragmen ...
- 字典表+委托替代switch解决思路
参考:http://www.jianshu.com/p/8887b3b3e8ba 代码 namespace 解决Switch { class Program { delegate string fun ...
- linus系统下使用hexo搭建个人博客
最近在搭建自己的个人网站,准备在上面内置一个博客模块,把之前或者以后杂七杂八的总结都放里边. 大致查了一下在WordPress和Hexo间选用了Hexo,体量较小一点. 先贴上Hexo的官方文档:He ...
- roboframework-ride运行案例时报 Error 267 错误问题
偶然间碰到这个问题,检查下路径是否有中文,如有中文换成英文试试. (ps:通常自己创建的中文路径也是可以的,我的案例是从Linux环境中创建拷贝过来的,可能导致案例路径编码问题)
- 将 flask 中的 session 存储到 SQLite 数据库中
将 flask 中的 session 存储到 SQLite 数据库中 使用 flask 构建服务器后端时,常需要在浏览器端存储 cookie 用于识别不同用户,根据不同的 cookie 判断出当前请求 ...
- 面试题 数据库sql
一.建表的结构和数据,在sqlserver直接用就行了 USE [test] GO /****** Object: Table [dbo].[TEACHER] Script Date: 05/16/2 ...
- C#字符串替换_无视大小写
C#里的string.Replace是不能无视大小写的. 首先想到的是正则表达式,在网上查了下,果然有用正则表达式配合一些逻辑运算,实现无视大小写的字符串替换方法.但是正则表达式的方法用起来很麻烦,实 ...