题目:http://poj.org/problem?id=2115

exgcd裸题。注意最后各种%b。注意打出正确的exgcd板子。就是别忘了/=g。

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
ll a,b,x,y,r,A,B,C,k,g;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=;y=;return;}
exgcd(b,a%b,y,x);y-=a/b*x;
}
int main()
{
while()
{
scanf("%lld%lld%lld%lld",&A,&B,&C,&k);
if(!A&&!B&&!C&&!k)return ;
a=C;b=(1ll<<k);r=B-A;
ll g=gcd(a,b);
if(r%g){printf("FOREVER\n");continue;}
a/=g;b/=g;r/=g;/////////
exgcd(a,b,x,y);
printf("%lld\n",(x%b*r%b+b)%b);//
}
}

poj 2115 C Looooops——exgcd模板的更多相关文章

  1. Poj 2115 C Looooops(exgcd变式)

    C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22704 Accepted: 6251 Descripti ...

  2. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

  3. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  4. POJ 2115 C Looooops(Exgcd)

    [题目链接] http://poj.org/problem?id=2115 [题目大意] 求for (variable = A; variable != B; variable += C)的循环次数, ...

  5. poj 2115 C Looooops(推公式+扩展欧几里得模板)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  6. POJ 2115 C Looooops扩展欧几里得

    题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...

  7. POJ 2115 C Looooops(模线性方程)

    http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...

  8. POJ 2115 C Looooops

    扩展GCD...一定要(1L<<k),不然k=31是会出错的 ....                        C Looooops Time Limit: 1000MS   Mem ...

  9. poj 2115 C Looooops(扩展gcd)

    题目链接 这个题犯了两个小错误,感觉没错,结果怒交了20+遍,各种改看别人题解,感觉思路没有错误,就是wa. 后来看diccuss和自己查错,发现自己的ecgcd里的x*(a/b)写成了x*a/b.还 ...

随机推荐

  1. 玩转python主题模型程序库gensim

    gensim是python下一个极易上手的主题模型程序库(topic model),网址在:http://radimrehurek.com/gensim/index.html 安装过程较为繁琐,参考h ...

  2. uCOS-II的学习笔记(共九期)和例子(共六个)

    源:uCOS-II的学习笔记(共九期)和例子(共六个) 第一篇 :学习UCOS前的准备工作http://blog.sina.com.cn/s/blog_98ee3a930100w0eu.html 第二 ...

  3. jQuery带闹钟的数字时钟

    在线演示 本地下载

  4. python补充知识点

    1. 在python2中用xrange,在python3中直接使用range就好了 2. 常数 None在逻辑判断的时候指代False,其他方式不代表True或者False 3. for循环只作用域容 ...

  5. 手把手教你使用eclipse+qemu+gdb来单步调试ARM内核【学习笔记】

    平台信息:linux4.0 平台:qemu 作者:庄泽彬 说明:笨叔叔的Linux视频的笔记 一.编译linux源码 export CROSS_COMPILE=arm-linux-gnueabi- e ...

  6. Oracle常用知识小总结

    永不放弃,一切皆有可能!!! 只为成功找方法,不为失败找借口! Oracle常用知识小总结 1. 创建自增主键 对于习惯了SQL SERVER的图形化界面操作的SQLer,很长一段时间不用oracle ...

  7. 在Java项目中部署使用Memcached[转]

    在项目中使用到Memcached主要的目的是,通过缓存数据库查询结果,减少数据库访问次数,从而提高动态.数据库驱动网站的速度.提高可扩展性.Memcached是一个高性能的分布式内存对象缓存系统,基于 ...

  8. MYSQL limit用法

    1.Mysql的limit用法 在我们使用查询语句的时候,经常要返回前几条或者中间某几行数据,这个时候怎么办呢?不用担心,mysql已经为我们提供了这样一个功能. SELECT * FROM tabl ...

  9. CF703D Mishka and Interesting sum

    题意:给定一个1e6长度的值域1e9的数组.每次给定询问,询问区间内出现偶数次的数的异或和. 题解:首先很显然,每一次询问的答案,等于这个区间所有不同元素异或和异或上区间异或和.(因为出现偶数次的对区 ...

  10. 获取本机MSSQL保存凭证

    首先要感谢哥们对我的指点,多谢. 当我们遇到类似情况下,如何获取保存在MSSQL工具里的凭证呢?  //如果对方连接地址后面加了IP\sqlexpress 连接的时候你也记得加上,不然即使密码正确,也 ...