memcached的cache机制是怎样的?

  Memcached主要的cache机制是LRU(最近最少用)算法+超时失效。当您存数据到memcached中,可以指定该数据在缓存中可以呆多久Which is forever, or some time in the future。如果memcached的内存不够用了,过期的slabs会优先被替换,接着就轮到最老的未被使用的slabs。

  memcached如何实现冗余机制?
  不实现!我们对这个问题感到很惊讶。Memcached应该是应用的缓存层。它的设计本身就不带有任何冗余机制。如果一个memcached节点失去了所有数据,您应该可以从数据源(比如数据库)再次获取到数据。您应该特别注意,您的应用应该可以容忍节点的失效。不要写一些糟糕的查询代码,寄希望于 memcached来保证一切!如果您担心节点失效会大大加重数据库的负担,那么您可以采取一些办法。比如您可以增加更多的节点(来减少丢失一个节点的影响),热备节点(在其他节点down了的时候接管IP),等等。

  memcached如何处理容错的?
  不处理!:) 在memcached节点失效的情况下,集群没有必要做任何容错处理。如果发生了节点失效,应对的措施完全取决于用户。节点失效时,下面列出几种方案供您选择:

* 忽略它! 在失效节点被恢复或替换之前,还有很多其他节点可以应对节点失效带来的影响。

* 把失效的节点从节点列表中移除。做这个操作千万要小心!在默认情况下(余数式哈希算法),客户端添加或移除节点,会导致所有的缓存数据不可用!因为哈希参照的节点列表变化了,大部分key会因为哈希值的改变而被映射到(与原来)不同的节点上。

* 启动热备节点,接管失效节点所占用的IP。这样可以防止哈希紊乱(hashing chaos)。

* 如果希望添加和移除节点,而不影响原先的哈希结果,可以使用一致性哈希算法(consistent hashing)。您可以百度一下一致性哈希算法。支持一致性哈希的客户端已经很成熟,而且被广泛使用。去尝试一下吧!

* 两次哈希(reshing)。当客户端存取数据时,如果发现一个节点down了,就再做一次哈希(哈希算法与前一次不同),重新选择另一个节点(需要注意的时,客户端并没有把down的节点从节点列表中移除,下次还是有可能先哈希到它)。如果某个节点时好时坏,两次哈希的方法就有风险了,好的节点和坏的节点上都可能存在脏数据(stale data)。

  如何将memcached中item批量导入导出?

  您不应该这样做!Memcached是一个非阻塞的服务器。任何可能导致memcached暂停或瞬时拒绝服务的操作都应该值得深思熟虑。向 memcached中批量导入数据往往不是您真正想要的!想象看,如果缓存数据在导出导入之间发生了变化,您就需要处理脏数据了;如果缓存数据在导出导入之间过期了,您又怎么处理这些数据呢?

  因此,批量导出导入数据并不像您想象中的那么有用。不过在一个场景倒是很有用。如果您有大量的从不变化的数据,并且希望缓存很快热(warm)起来,批量导入缓存数据是很有帮助的。虽然这个场景并不典型,但却经常发生,因此我们会考虑在将来实现批量导出导入的功能。

  Steven Grimm,一如既往地,,在邮件列表中给出了另一个很好的例子:http://lists.danga.com/pipermail/memcached/2007-July/004802.html 。

  但是我确实需要把memcached中的item批量导出导入,怎么办??

  好吧好吧。如果您需要批量导出导入,最可能的原因一般是重新生成缓存数据需要消耗很长的时间,或者数据库坏了让您饱受痛苦。

  如果一个memcached节点down了让您很痛苦,那么您还会陷入其他很多麻烦。您的系统太脆弱了。您需要做一些优化工作。比如处理"惊群"问题(比如 memcached节点都失效了,反复的查询让您的数据库不堪重负...这个问题在FAQ的其他提到过),或者优化不好的查询。记住,Memcached 并不是您逃避优化查询的借口。

  如果您的麻烦仅仅是重新生成缓存数据需要消耗很长时间(15秒到超过5分钟),您可以考虑重新使用数据库。这里给出一些提示:

* 使用MogileFS(或者CouchDB等类似的软件)在存储item。把item计算出来并dump到磁盘上。MogileFS可以很方便地覆写item,并提供快速地访问。您甚至可以把MogileFS中的item缓存在memcached中,这样可以加快读取速度。 MogileFS+Memcached的组合可以加快缓存不命中时的响应速度,提高网站的可用性。
    * 重新使用MySQL。MySQL的InnoDB主键查询的速度非常快。如果大部分缓存数据都可以放到VARCHAR字段中,那么主键查询的性能将更好。从memcached中按key查询几乎等价于MySQL的主键查询:将key 哈希到64-bit的整数,然后将数据存储到MySQL中。您可以把原始(不做哈希)的key存储都普通的字段中,然后建立二级索引来加快查询...key被动地失效,批量删除失效的key,等等。

  上面的方法都可以引入memcached,在重启memcached的时候仍然提供很好的性能。由于您不需要当心"hot"的item被 memcached LRU算法突然淘汰,用户再也不用花几分钟来等待重新生成缓存数据(当缓存数据突然从内存中消失时),因此上面的方法可以全面提高性能。

  关于这些方法的细节,详见博客:http://dormando.livejournal.com/495593.html 。

  memcached是如何做身份验证的?
  没有身份认证机制!memcached是运行在应用下层的软件(身份验证应该是应用上层的职责)。memcached的客户端和服务器端之所以是轻量级的,部分原因就是完全没有实现身份验证机制。这样,memcached可以很快地创建新连接,服务器端也无需任何配置。

  如果您希望限制访问,您可以使用防火墙,或者让memcached监听unix domain socket。

  memcached的多线程是什么?如何使用它们?
  线程就是定律(threads rule)!在Steven Grimm和Facebook的努力下,memcached 1.2及更高版本拥有了多线程模式。多线程模式允许memcached能够充分利用多个CPU,并在CPU之间共享所有的缓存数据。memcached使用一种简单的锁机制来保证数据更新操作的互斥。相比在同一个物理机器上运行多个memcached实例,这种方式能够更有效地处理multi gets。

  如果您的系统负载并不重,也许您不需要启用多线程工作模式。如果您在运行一个拥有大规模硬件的、庞大的网站,您将会看到多线程的好处。

  更多信息请参见:http://code.sixapart.com/svn/memcached/trunk/server/doc/threads.txt 。

  简单地总结一下:命令解析(memcached在这里花了大部分时间)可以运行在多线程模式下。memcached内部对数据的操作是基于很多全局锁的(因此这部分工作不是多线程的)。未来对多线程模式的改进,将移除大量的全局锁,提高memcached在负载极高的场景下的性能。

  memcached能接受的key的最大长度是多少?
  key的最大长度是250个字符。需要注意的是,250是memcached服务器端内部的限制,如果您使用的客户端支持"key的前缀"或类似特性,那么key(前缀+原始key)的最大长度是可以超过250个字符的。我们推荐使用使用较短的key,因为可以节省内存和带宽。

  memcached对item的过期时间有什么限制?
  过期时间最大可以达到30天。memcached把传入的过期时间(时间段)解释成时间点后,一旦到了这个时间点,memcached就把item置为失效状态。这是一个简单但obscure的机制。

  memcached最大能存储多大的单个item?
  1MB。如果你的数据大于1MB,可以考虑在客户端压缩或拆分到多个key中。

  为什么单个item的大小被限制在1M byte之内?
  啊...这是一个大家经常问的问题!

  简单的回答:因为内存分配器的算法就是这样的。

  详细的回答:Memcached的内存存储引擎(引擎将来可插拔...),使用slabs来管理内存。内存被分成大小不等的slabs chunks(先分成大小相等的slabs,然后每个slab被分成大小相等chunks,不同slab的chunk大小是不相等的)。chunk的大小依次从一个最小数开始,按某个因子增长,直到达到最大的可能值。

  如果最小值为400B,最大值是1MB,因子是1.20,各个slab的chunk的大小依次是:slab1 - 400B slab2 - 480B slab3 - 576B ...

  slab中chunk越大,它和前面的slab之间的间隙就越大。因此,最大值越大,内存利用率越低。Memcached必须为每个slab预先分配内存,因此如果设置了较小的因子和较大的最大值,会需要更多的内存。

  还有其他原因使得您不要这样向memcached中存取很大的数据...不要尝试把巨大的网页放到mencached中。把这样大的数据结构load和unpack到内存中需要花费很长的时间,从而导致您的网站性能反而不好。

  如果您确实需要存储大于1MB的数据,你可以修改slabs.c:POWER_BLOCK的值,然后重新编译memcached;或者使用低效的malloc/free。其他的建议包括数据库、MogileFS等。

  我可以在不同的memcached节点上使用大小不等的缓存空间吗?这么做之后,memcached能够更有效地使用内存吗?
  Memcache客户端仅根据哈希算法来决定将某个key存储在哪个节点上,而不考虑节点的内存大小。因此,您可以在不同的节点上使用大小不等的缓存。但是一般都是这样做的:拥有较多内存的节点上可以运行多个memcached实例,每个实例使用的内存跟其他节点上的实例相同。

  什么是二进制协议,我该关注吗?

  关于二进制最好的信息当然是二进制协议规范:http://code.google.com/p/memcached/wiki/MemcacheBinaryProtocol 。

  二进制协议尝试为端提供一个更有效的、可靠的协议,减少客户端/服务器端因处理协议而产生的CPU时间。
根据Facebook的测试,解析ASCII协议是memcached中消耗CPU时间最多的环节。所以,我们为什么不改进ASCII协议呢?

  在这个邮件列表的thread中可以找到一些旧的信息:http://lists.danga.com/pipermail/memcached/2007-July/004636.html 。

  memcached的内存分配器是如何工作的?为什么不适用malloc/free!?为何要使用slabs?
  实际上,这是一个编译时选项。默认会使用内部的slab分配器。您确实确实应该使用内建的slab分配器。最早的时候,memcached只使用 malloc/free来管理内存。然而,这种方式不能与OS的内存管理以前很好地工作。反复地malloc/free造成了内存碎片,OS最终花费大量的时间去查找连续的内存块来满足malloc的请求,而不是运行memcached进程。如果您不同意,当然可以使用malloc!只是不要在邮件列表中抱怨啊:)

  slab分配器就是为了解决这个问题而生的。内存被分配并划分成chunks,一直被重复使用。因为内存被划分成大小不等的slabs,如果 item的大小与被选择存放它的slab不是很合适的话,就会浪费一些内存。Steven Grimm正在这方面已经做出了有效的改进。

  邮件列表中有一些关于slab的改进(power of n 还是 power of 2)和权衡方案:http://lists.danga.com/pipermail/memcached/2006-May/002163.html http://lists.danga.com/pipermail/memcached/2007-March/003753.html 。

  如果您想使用malloc/free,看看它们工作地怎么样,您可以在构建过程中定义USE_SYSTEM_MALLOC。这个特性没有经过很好的测试,所以太不可能得到开发者的支持。

  更多信息:http://code.sixapart.com/svn/memcached/trunk/server/doc/memory_management.txt 。

  memcached是原子的吗?
  当然!好吧,让我们来明确一下:
  所有的被发送到memcached的单个命令是完全原子的。如果您针对同一份数据同时发送了一个set命令和一个get命令,它们不会影响对方。它们将被串行化、先后执行。即使在多线程模式,所有的命令都是原子的,除非程序有bug:)
  命令序列不是原子的。如果您通过get命令获取了一个item,修改了它,然后想把它set回memcached,我们不保证这个item没有被其他进程(process,未必是操作系统中的进程)操作过。在并发的情况下,您也可能覆写了一个被其他进程set的item。

  memcached 1.2.5以及更高版本,提供了gets和cas命令,它们可以解决上面的问题。如果您使用gets命令查询某个key的item,memcached会给您返回该item当前值的唯一标识。如果您覆写了这个item并想把它写回到memcached中,您可以通过cas命令把那个唯一标识一起发送给 memcached。如果该item存放在memcached中的唯一标识与您提供的一致,您的写操作将会成功。如果另一个进程在这期间也修改了这个 item,那么该item存放在memcached中的唯一标识将会改变,您的写操作就会失败。

  通常,基于memcached中item的值来修改item,是一件棘手的事情。除非您很清楚自己在做什么,否则请不要做这样的事情。

memcache常见问题及解答的更多相关文章

  1. 关于Installshield里一些常见问题的解答—艾泽拉斯之海洋女神出品

    原文:关于Installshield里一些常见问题的解答-艾泽拉斯之海洋女神出品 上一篇:一个完整的安装程序实例—艾泽拉斯之海洋女神出品(五) --补遗转载时请务必保留转载出处和由艾泽拉斯之海洋女神出 ...

  2. 【Keras学习】常见问题与解答

    Keras FAQ:常见问题 如何引用Keras? 如果Keras对你的研究有帮助的话,请在你的文章中引用Keras.这里是一个使用BibTex的例子 @misc{chollet2015keras, ...

  3. Handler的源码和常见问题的解答不崩溃

    Handler是Android中的消息处理机制,是一种线程间通信的解决方案,同时你也可以理解为它天然的为我们在主线程创建一个队列,队列中的消息顺序就是我们设置的延迟的时间,如果你想在Android中实 ...

  4. PHP浮点数的一个常见问题的解答 (转载 http://www.laruence.com/2013/03/26/2884.html)

    不过, 我当时遗漏了一点, 也就是对于如下的这个常见问题的回答: <?php $f = 0.58; var_dump(intval($f * 100)); //为啥输出57 ?> 为啥输出 ...

  5. OpenShare常见问题及解答

    OpenShare常见问题及回答: Q:OpenShare可以整合SAP么? A:当然可以,OpenShare是真正完全开放的产品,但要进行二次开发,事实上我们帮我们大部分的客户都整合了SAP,包括数 ...

  6. PHP浮点数的一个常见问题的解答

    作者: Laruence 本文地址: http://www.laruence.com/2013/03/26/2884.html 转载请注明出处 关于PHP的浮点数, 我之前写过一篇文章: 关于PHP浮 ...

  7. Keras官方中文文档:常见问题与解答

    所属分类:Keras Keras FAQ:常见问题 如何引用Keras? 如何使Keras调用GPU? 如何在多张GPU卡上使用Keras "batch", "epoch ...

  8. TFS2012常见问题及解答

    1.删除workItem工作项(包括Bug,用户场景,任务等) 需要利用到witadmin工具,目录在cd %programfiles%\Microsoft Visual Studio 11.0\Co ...

  9. Keras常见问题及解答

    Keras官方中文版文档 如何引用 Keras? 如何在 GPU 上运行 Keras? 如何在多 GPU 上运行 Keras 模型? "sample", "batch&q ...

随机推荐

  1. Search insert position, 查找插入位置

    问题描述:给定一个有序序列,如果找到target,返回下标,如果找不到,返回插入位置. 算法分析:依旧利用二分查找算法. public int searchInsert(int[] nums, int ...

  2. 在OpenStack里怎样配置Neutron,让虚拟机访问外网

    http://blog.csdn.net/zhangli_perdue/article/details/50264681 OpenStack里虚机(或者叫instance)只有在分配floating ...

  3. IFE 2015_spring task0002 自学记录

    JavaScript数据类型及语言基础 1. 判断arr是不是一个数组,返回一个bool值. 首先javascript有5大基本数据类型:Undefined,Null,Boolean,Number和S ...

  4. 如何学好C++语言

    前段时间写了一篇如何学好C语言,就有人回复问我如何学好C++,所以,我把我个人的一些学习经验写在这里,希望对大家有用.首先,因为如何学好C语言中谈到了算法和系统,所以这里就只谈C++语言. C++是最 ...

  5. idea debug调试快捷键

    F9            resume programe 恢复程序 Alt+F10       show execution point 显示执行断点 F8            Step Over ...

  6. winform 中 MessageBox 用法大全

    (转自:http://blog.csdn.net/xuenzhen123/article/details/4808005) MessageBox.Show()共有21中重载方法.现将其常见用法总结如下 ...

  7. linux命令三

    作业一:1) 将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) [root@bogon test]# cat /etc/passwd /etc/group > /1. ...

  8. org.apache.jasper.JasperException: #{...} is not allowed in template

    org.apache.jasper.JasperException: #{...} is not allowed in template   针对jsp页面使用JQueryUI元素,出现org.apa ...

  9. 2017.11.16 STM8L052 温度控制器

    1 J-link和ST-link的兼容性 STM8只能用ST-link.J-link兼容所有的(大部分而已)的ARM内核IC mark:  http://bbs.eeworld.com.cn/thre ...

  10. DataV纪录

    DataV 是阿里云出品的拖拽式可视化工具,专精于业务数据与地理信息融合的大数据可视化.