1.题目来源LOJ1282

You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.

Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).

Output
For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.

Sample Input
Output for Sample Input
5

123456 1

123456 2

2 31

2 32

29 8751919

Case 1: 123 456

Case 2: 152 936

Case 3: 214 648

Case 4: 429 296

Case 5: 665 669

2.题目分析

给定两个整数n和k,求出n^k的前三位和后三位

3.我的思路

虽然好像数据很大哦,估计要爆炸,但是要不要用java试一下呢
TLE代码如下:

import java.math.BigDecimal;
import java.util.Scanner;
import java.util.HashMap;
import java.math.BigInteger;
public class Main{
public static void main(String[] args) {
Scanner ind = new Scanner(System.in);
int T=ind.nextInt(),d=1;
while(T>1){
--T;
BigInteger a=ind.nextBigInteger();
int k=ind.nextInt();
BigInteger res=BigInteger.valueOf(1);
while(k>=1){
if(k%2==1)
{
res=res.multiply(a);
k--;
}
k=k/2;
a=a.multiply(a);
}
String s=res.toString();
System.out.print("Case ");
System.out.print(d);
d++;
System.out.print(": ");
System.out.print(s.substring(0, 3));
System.out.print(" ");
System.out.println(s.substring(s.length()-3, s.length()));
}
}
}

咳咳……结果还是爆了,还是没办法想的简单Orz.

好吧,其实换一种思路,不用把结构都求出来,只求前三位和后三位。
先看后三位,这个可以使用快速幂来做,模取1000即可。
关键是前三位:
推导过程如下:


所以最后,x的前m位数就为10m−1∗10b10m−1∗10b
图片来自http://blog.csdn.net/Dylan_Frank/article/details/52749665?locationNum=16
最后的最后,由于把整数和小数分开了,结果就可能出现00*或者0**,所以需要去掉前导零,就用%3d,要不还是WA…..Orz

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std;
int Pow_mod(int a, int b, int mod) {
int res = 1, temp;
a = a%mod, temp = a;
for (; b; b /= 2) {
if (b & 1) {
res = res * temp % mod; // 2进制上这一位为1,乘上这一位权值
}
temp = temp * temp % mod; // 位数加1, 权值平方
}
return res;
}
int main()
{
int n, k, T, count = 1;
cin >> T;
while (T-- > 0)
{
cin >> n >> k;
double a = k*log10(n);
a = a - (int)a;
double res1 = pow(10, a)*pow(10, 2);
int res2 = Pow_mod(n, k, 1000);
printf("Case %d: %d %03d\n",count,(int)res1,res2);
count++;
}
}

数论(一)LOJ1282的更多相关文章

  1. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

  2. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

  3. 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)

    ~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...

  4. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  5. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  6. bzoj2219: 数论之神

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. hdu5072 Coprime (2014鞍山区域赛C题)(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...

  8. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  9. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

随机推荐

  1. scss-@each指令

    一.@each指令实例 在@each变量的定义,其中包含的每个项目的列表中的值. 语法: @each $var in <list or map> 语法简要说明如下. $var: 它代表了变 ...

  2. scss-数据类型

    scss当前支持七种主要数据类型 (1).数字,1, 2, 13, 10px. (2).字符串,有引号字符串与无引号字符串,"foo", 'bar', baz. (3).颜色,bl ...

  3. CSS 兼容性支持

    CSS 兼容性支持 在一个CSS属性还没有成为标准之前,各浏览器厂商已经做了这个属性的实现,可能各浏览器实现不尽相同,所以加入属性前缀区分. safari , chrome:-webkit- oper ...

  4. JDBC实现动态查询

    一 概述 1.什么是动态查询? 从多个查询条件中随机选择若干个组合成一个DQL语句进行查询,这一过程叫做动态查询. 2.动态查询的难点 可供选择的查询条件多,组合情况多,难以一一列举. 3.最终查询语 ...

  5. String StringBuffer StringBuilder对比

    1.相同点 三者都可以用来存储字符串类型数据. 2.不同点 String类型对象内容不可变,每变化一次都会创建一个新的对象. StringBuiler与StringBuffer的内容与长度均可以发生变 ...

  6. c 结构体中的变长数组

    在Linux系统里,/usr/include/linux/if_pppox.h里面有这样一个结构: struct pppoe_tag { __u16 tag_type; __u16 tag_len; ...

  7. python 后台运行命令

    nohup python a.py  > a.log 2>&1 & 在窗口中单开虚拟session: tmux new -s "name" 推出虚拟窗口 ...

  8. Mirco F-measure and Macro F-measure

  9. python 后台服务

    centos 6x #!/bin/sh # chkconfig: 123456 90 10 # TTS Server for Speech Synthesis # workdir=/etc/speec ...

  10. 如何用css将一个div设置为一个圆

    直接上代码: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> ...